Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 588(7837): 250-253, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33299189

RESUMO

Capillary condensation of water is ubiquitous in nature and technology. It routinely occurs in granular and porous media, can strongly alter such properties as adhesion, lubrication, friction and corrosion, and is important in many processes used by microelectronics, pharmaceutical, food and other industries1-4. The century-old Kelvin equation5 is frequently used to describe condensation phenomena and has been shown to hold well for liquid menisci with diameters as small as several nanometres1-4,6-14. For even smaller capillaries that are involved in condensation under ambient humidity and so of particular practical interest, the Kelvin equation is expected to break down because the required confinement becomes comparable to the size of water molecules1-22. Here we use van der Waals assembly of two-dimensional crystals to create atomic-scale capillaries and study condensation within them. Our smallest capillaries are less than four ångströms in height and can accommodate just a monolayer of water. Surprisingly, even at this scale, we find that the macroscopic Kelvin equation using the characteristics of bulk water describes the condensation transition accurately in strongly hydrophilic (mica) capillaries and remains qualitatively valid for weakly hydrophilic (graphite) ones. We show that this agreement is fortuitous and can be attributed to elastic deformation of capillary walls23-25, which suppresses the giant oscillatory behaviour expected from the commensurability between the atomic-scale capillaries and water molecules20,21. Our work provides a basis for an improved understanding of capillary effects at the smallest scale possible, which is important in many realistic situations.

2.
Nature ; 558(7710): 420-424, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925968

RESUMO

Gas permeation through nanoscale pores is ubiquitous in nature and has an important role in many technologies1,2. Because the pore size is typically smaller than the mean free path of gas molecules, the flow of the gas molecules is conventionally described by Knudsen theory, which assumes diffuse reflection (random-angle scattering) at confining walls3-7. This assumption holds surprisingly well in experiments, with only a few cases of partially specular (mirror-like) reflection known5,8-11. Here we report gas transport through ångström-scale channels with atomically flat walls12,13 and show that surface scattering can be either diffuse or specular, depending on the fine details of the atomic landscape of the surface, and that quantum effects contribute to the specularity at room temperature. The channels, made from graphene or boron nitride, allow helium gas flow that is orders of magnitude faster than expected from theory. This is explained by specular surface scattering, which leads to ballistic transport and frictionless gas flow. Similar channels, but with molybdenum disulfide walls, exhibit much slower permeation that remains well described by Knudsen diffusion. We attribute the difference to the larger atomic corrugations at molybdenum disulfide surfaces, which are similar in height to the size of the atoms being transported and their de Broglie wavelength. The importance of this matter-wave contribution is corroborated by the observation of a reversed isotope effect, whereby the mass flow of hydrogen is notably higher than that of deuterium, in contrast to the relation expected for classical flows. Our results provide insights into the atomistic details of molecular permeation, which previously could be accessed only in simulations10,14, and demonstrate the possibility of studying gas transport under controlled confinement comparable in size to the quantum-mechanical size of atoms.

3.
Nature ; 538(7624): 222-225, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27602512

RESUMO

Nanometre-scale pores and capillaries have long been studied because of their importance in many natural phenomena and their use in numerous applications. A more recent development is the ability to fabricate artificial capillaries with nanometre dimensions, which has enabled new research on molecular transport and led to the emergence of nanofluidics. But surface roughness in particular makes it challenging to produce capillaries with precisely controlled dimensions at this spatial scale. Here we report the fabrication of narrow and smooth capillaries through van der Waals assembly, with atomically flat sheets at the top and bottom separated by spacers made of two-dimensional crystals with a precisely controlled number of layers. We use graphene and its multilayers as archetypal two-dimensional materials to demonstrate this technology, which produces structures that can be viewed as if individual atomic planes had been removed from a bulk crystal to leave behind flat voids of a height chosen with atomic-scale precision. Water transport through the channels, ranging in height from one to several dozen atomic planes, is characterized by unexpectedly fast flow (up to 1 metre per second) that we attribute to high capillary pressures (about 1,000 bar) and large slip lengths. For channels that accommodate only a few layers of water, the flow exhibits a marked enhancement that we associate with an increased structural order in nanoconfined water. Our work opens up an avenue to making capillaries and cavities with sizes tunable to ångström precision, and with permeation properties further controlled through a wide choice of atomically flat materials available for channel walls.

4.
J Microsc ; 279(3): 168-176, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31823368

RESUMO

Transmission electron microscope (TEM) specimen preparation by focused ion beam (FIB) milling requires delicate polishing of a thin window of material during the final stages of the procedure. Over or underpolishing is common and requires extra microscope resources to correct. Despite some methods for lamella thickness measurement being available, the majority of users judge the final polishing step subjectively from scanning electron microscope (SEM) images acquired between milling steps. Here we demonstrate successful thickness determination of thin silicon lamellae using calibrated secondary electron detectors in a FIB-SEM dual-beam chamber. Unlike previous thickness measurement methods it does not require long acquisition times, the use of in-chamber scanning transmission electron microscope (STEM) or energy dispersive x-ray spectroscopy detectors. The calibration aligns a SEM image to an electron energy loss spectroscopy (EELS) map of lamella thickness acquired in a TEM. This calibration reveals the greyscale-thickness dependence of two secondary electron SEM detectors: the through-lens detector (TLD) and the in-chamber electron detector (ICE). It was found that lamella thickness estimation for TLD images is accurate for areas thinner than 0.4 t/λ, whilst ICE images are most accurate for areas thicker than 0.5 t/λ up to 1.1 t/λ. The procedure presented here allows objective lamella thickness determination during the final stages of FIB specimen preparation using conventional imaging modes for common secondary electron detectors. LAY DESCRIPTION: Successful analysis of a material in a transmission electron microscope requires very thin windows of the material to be fabricated. Despite the quality of this analysis relying heavily on the thickness of the window, measuring thickness during window fabrication is not common practice. The authors show that it is possible to measure the thickness of the window directly in a focused-ion-beam chamber with a scanning electron microscope without altering the fabrication procedure, and using electron detectors common to most microscopes.

5.
Nat Mater ; 20(7): 908-909, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34188200
6.
Nat Mater ; 14(3): 301-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25643033

RESUMO

The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices and so on. Here, we take the complexity and functionality of such van der Waals heterostructures to the next level by introducing quantum wells (QWs) engineered with one atomic plane precision. We describe light-emitting diodes (LEDs) made by stacking metallic graphene, insulating hexagonal boron nitride and various semiconducting monolayers into complex but carefully designed sequences. Our first devices already exhibit an extrinsic quantum efficiency of nearly 10% and the emission can be tuned over a wide range of frequencies by appropriately choosing and combining 2D semiconductors (monolayers of transition metal dichalcogenides). By preparing the heterostructures on elastic and transparent substrates, we show that they can also provide the basis for flexible and semi-transparent electronics. The range of functionalities for the demonstrated heterostructures is expected to grow further on increasing the number of available 2D crystals and improving their electronic quality.

7.
Nano Lett ; 15(8): 4914-21, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26132110

RESUMO

Many layered materials can be cleaved down to individual atomic planes, similar to graphene, but only a small minority of them are stable under ambient conditions. The rest react and decompose in air, which has severely hindered their investigation and potential applications. Here we introduce a remedial approach based on cleavage, transfer, alignment, and encapsulation of air-sensitive crystals, all inside a controlled inert atmosphere. To illustrate the technology, we choose two archetypal two-dimensional crystals that are of intense scientific interest but are unstable in air: black phosphorus and niobium diselenide. Our field-effect devices made from their monolayers are conductive and fully stable under ambient conditions, which is in contrast to the counterparts processed in air. NbSe2 remains superconducting down to the monolayer thickness. Starting with a trilayer, phosphorene devices reach sufficiently high mobilities to exhibit Landau quantization. The approach offers a venue to significantly expand the range of experimentally accessible two-dimensional crystals and their heterostructures.

8.
Nano Lett ; 15(12): 8223-8, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26555037

RESUMO

Monolayers of molybdenum and tungsten dichalcogenides are direct bandgap semiconductors, which makes them promising for optoelectronic applications. In particular, van der Waals heterostructures consisting of monolayers of MoS2 sandwiched between atomically thin hexagonal boron nitride (hBN) and graphene electrodes allows one to obtain light emitting quantum wells (LEQWs) with low-temperature external quantum efficiency (EQE) of 1%. However, the EQE of MoS2- and MoSe2-based LEQWs shows behavior common for many other materials: it decreases fast from cryogenic conditions to room temperature, undermining their practical applications. Here we compare MoSe2 and WSe2 LEQWs. We show that the EQE of WSe2 devices grows with temperature, with room temperature EQE reaching 5%, which is 250× more than the previous best performance of MoS2 and MoSe2 quantum wells in ambient conditions. We attribute such different temperature dependences to the inverted sign of spin-orbit splitting of conduction band states in tungsten and molybdenum dichalcogenides, which makes the lowest-energy exciton in WSe2 dark.

9.
Neuroimage ; 111: 379-84, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25721427

RESUMO

Individual differences in the temporal dynamics of the haemodynamic response can reflect cortical excitation and can reveal underlying cortical physiology. Here, we show differences in the shape of the haemodynamic response that are dependent on stimulus parameters. Two sets of visual stimuli were used varying in parameters that are known to manipulate the haemodynamic response in the visual cortex. We measured the oxyhaemoglobin response using near infrared spectroscopy. The first set of stimuli comprised chromatic square-wave gratings that varied with respect to the separation in the CIE UCS chromaticities of the alternating bars. The gratings with large separations in chromaticity evoked an oxyhaemoglobin response with greater amplitude, consistent with greater activation of the visual cortex. The second set of stimuli comprised horizontal achromatic gratings that (1) were static, (2) drifted at a constant velocity towards fixation, or (3) reversed direction every half spatial cycle to create a vertical vibrating motion. Although the three types of grating had a similar effect on the amplitude of the oxyhaemoglobin response, the moving gratings (2 and 3) evoked a steeper decrease in oxyhaemoglobin concentration after stimulus-offset. The steeper slope appears to reflect the post-stimulus undershoot and the slope may provide a correlate of cortical excitability when the amplitude of the haemodynamic response has saturated.


Assuntos
Hemodinâmica/fisiologia , Oxiemoglobinas , Reconhecimento Visual de Modelos/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Córtex Visual/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Nano Lett ; 14(7): 3987-92, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24871927

RESUMO

The new paradigm of heterostructures based on two-dimensional (2D) atomic crystals has already led to the observation of exciting physical phenomena and creation of novel devices. The possibility of combining layers of different 2D materials in one stack allows unprecedented control over the electronic and optical properties of the resulting material. Still, the current method of mechanical transfer of individual 2D crystals, though allowing exceptional control over the quality of such structures and interfaces, is not scalable. Here we show that such heterostructures can be assembled from chemically exfoliated 2D crystals, allowing for low-cost and scalable methods to be used in device fabrication.


Assuntos
Grafite/química , Tinta , Nanopartículas/química , Nanoestruturas/química , Eletrônica/instrumentação , Desenho de Equipamento , Nanopartículas/ultraestrutura , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Impressão/instrumentação
11.
Nano Lett ; 14(6): 3270-6, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24844319

RESUMO

Hexagonal boron nitride is the only substrate that has so far allowed graphene devices exhibiting micrometer-scale ballistic transport. Can other atomically flat crystals be used as substrates for making quality graphene heterostructures? Here we report on our search for alternative substrates. The devices fabricated by encapsulating graphene with molybdenum or tungsten disulfides and hBN are found to exhibit consistently high carrier mobilities of about 60 000 cm(2) V(-1) s(-1). In contrast, encapsulation with atomically flat layered oxides such as mica, bismuth strontium calcium copper oxide, and vanadium pentoxide results in exceptionally low quality of graphene devices with mobilities of ∼1000 cm(2) V(-1) s(-1). We attribute the difference mainly to self-cleansing that takes place at interfaces between graphene, hBN, and transition metal dichalcogenides. Surface contamination assembles into large pockets allowing the rest of the interface to become atomically clean. The cleansing process does not occur for graphene on atomically flat oxide substrates.

12.
Nanotechnology ; 25(21): 215705, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24785272

RESUMO

The composition of InxGa1 - xN nanorods grown by molecular beam epitaxy with nominal x = 0.5 has been mapped by electron microscopy using Z-contrast imaging and x-ray microanalysis. This shows a coherent and highly strained core-shell structure with a near-atomically sharp boundary between a Ga-rich shell (x âˆ¼ 0.3) and an In-rich core (x âˆ¼ 0.7), which itself has In- and Ga-rich platelets alternating along the growth axis. It is proposed that the shell and core regions are lateral and vertical growth sectors, with the core structure determined by spinodal decomposition.

13.
Nat Mater ; 11(9): 764-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22842512

RESUMO

By stacking various two-dimensional (2D) atomic crystals on top of each other, it is possible to create multilayer heterostructures and devices with designed electronic properties. However, various adsorbates become trapped between layers during their assembly, and this not only affects the resulting quality but also prevents the formation of a true artificial layered crystal upheld by van der Waals interaction, creating instead a laminate glued together by contamination. Transmission electron microscopy (TEM) has shown that graphene and boron nitride monolayers, the two best characterized 2D crystals, are densely covered with hydrocarbons (even after thermal annealing in high vacuum) and exhibit only small clean patches suitable for atomic resolution imaging. This observation seems detrimental for any realistic prospect of creating van der Waals materials and heterostructures with atomically sharp interfaces. Here we employ cross sectional TEM to take a side view of several graphene-boron nitride heterostructures. We find that the trapped hydrocarbons segregate into isolated pockets, leaving the interfaces atomically clean. Moreover, we observe a clear correlation between interface roughness and the electronic quality of encapsulated graphene. This work proves the concept of heterostructures assembled with atomic layer precision and provides their first TEM images.

14.
ACS Appl Opt Mater ; 1(6): 1169-1173, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37384133

RESUMO

Colloidal semiconductor quantum dots are a well-established technology, with numerous materials available either commercially or through the vast body of literature. The prevalent materials are cadmium-based and are unlikely to find general acceptance in most applications. While the III-V family of materials is a likely substitute, issues remain about its long-term suitability, and other earth-abundant materials are being explored. In this report, we highlight a nanoscale half-Heusler semiconductor, LiZnN, composed of readily available elements as a potential alternative system to luminescent II-VI and III-V nanoparticle quantum dots.

15.
J Cancer Res Clin Oncol ; 149(18): 16355-16363, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37702806

RESUMO

PURPOSE: Tumour genomic profiling is of increasing importance in early phase trials to match patients to targeted therapeutics. Mutations vary by demographic group; however, regional differences are not characterised. This was investigated by comparing mutation prevalence for common cancers presenting to Newcastle Experimental Cancer Medicine Centre (ECMC) to The Cancer Genome Atlas (TCGA) and utility of trial matching modalities. METHODS: Detailed clinicogenomic data were obtained for patients presenting September 2017-December 2020. Prevalence of mutations in lung, colorectal, breast and prostate cancer was compared to TCGA GDC Data Portal. Experimental Cancer (EC) Trial Finder utility in matching trials was compared to a Molecular Tumour Board (MTB) and commercial sequencing reports. RESULTS: Of 311 patients with advanced cancer, this consisted of lung (n = 131, 42.1%), colorectal (n = 44, 14.1%), breast (n = 36, 11.6%) and prostate (n = 18, 5.6%). More than one mutation was identified in the majority (n = 260, 84%). Significant prevalence differences compared to TCGA were identified, including a high prevalence of EGFR in lung (P = 0.001); RB1 in breast (P = 0.0002); and multiple mutations in prostate cancer. EC Trial Finder demonstrated significantly different utility than sequencing reports in identifying trials (P = 0.007). CONCLUSIONS: Regional differences in mutations may exist with advanced stage accounting for prevalence of specific mutations. A national Trial Finder shows utility in finding targeted trials whilst commercial sequencing reports may over-report 'actionable' mutations. Understanding local prevalence and trial availability could increase enrolment onto matched early phase trials.


Assuntos
Neoplasias Colorretais , Neoplasias da Próstata , Masculino , Humanos , Prevalência , Biomarcadores Tumorais/genética , Inglaterra/epidemiologia , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/genética , Mutação , Sequenciamento de Nucleotídeos em Larga Escala
16.
Nat Commun ; 11(1): 3190, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581280

RESUMO

Epitaxial films may be released from growth substrates and transferred to structurally and chemically incompatible substrates, but epitaxial films of transition metal perovskite oxides have not been transferred to electroactive substrates for voltage control of their myriad functional properties. Here we demonstrate good strain transmission at the incoherent interface between a strain-released film of epitaxially grown ferromagnetic La0.7Sr0.3MnO3 and an electroactive substrate of ferroelectric 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 in a different crystallographic orientation. Our strain-mediated magnetoelectric coupling compares well with respect to epitaxial heterostructures, where the epitaxy responsible for strong coupling can degrade film magnetization via strain and dislocations. Moreover, the electrical switching of magnetic anisotropy is repeatable and non-volatile. High-resolution magnetic vector maps reveal that micromagnetic behaviour is governed by electrically controlled strain and cracks in the film. Our demonstration should inspire others to control the physical/chemical properties in strain-released epitaxial oxide films by using electroactive substrates to impart strain via non-epitaxial interfaces.

17.
Nat Nanotechnol ; 14(10): 962-966, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31477802

RESUMO

Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons1,2. For thicker two-dimensional (2D) materials, proton conductivity diminishes exponentially, so that, for example, monolayer MoS2 that is just three atoms thick is completely impermeable to protons1. This seemed to suggest that only one-atom-thick crystals could be used as proton-conducting membranes. Here, we show that few-layer micas that are rather thick on the atomic scale become excellent proton conductors if native cations are ion-exchanged for protons. Their areal conductivity exceeds that of graphene and hBN by one to two orders of magnitude. Importantly, ion-exchanged 2D micas exhibit this high conductivity inside the infamous gap for proton-conducting materials3, which extends from ∼100 °C to 500 °C. Areal conductivity of proton-exchanged monolayer micas can reach above 100 S cm-2 at 500 °C, well above the current requirements for the industry roadmap4. We attribute the fast proton permeation to ~5-Å-wide tubular channels that perforate micas' crystal structure, which, after ion exchange, contain only hydroxyl groups inside. Our work indicates that there could be other 2D crystals5 with similar nanometre-scale channels, which could help close the materials gap in proton-conducting applications.

18.
Sci Adv ; 5(1): eaau0906, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30746444

RESUMO

Similar to silicon-based semiconductor devices, van der Waals heterostructures require integration with high-k oxides. Here, we demonstrate a method to embed and pattern a multifunctional few-nanometer-thick high-k oxide within various van der Waals devices without degrading the properties of the neighboring two-dimensional materials. This transformation allows for the creation of several fundamental nanoelectronic and optoelectronic devices, including flexible Schottky barrier field-effect transistors, dual-gated graphene transistors, and vertical light-emitting/detecting tunneling transistors. Furthermore, upon dielectric breakdown, electrically conductive filaments are formed. This filamentation process can be used to electrically contact encapsulated conductive materials. Careful control of the filamentation process also allows for reversible switching memories. This nondestructive embedding of a high-k oxide within complex van der Waals heterostructures could play an important role in future flexible multifunctional van der Waals devices.

19.
Dev Sci ; 11(2): 299-305, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18333983

RESUMO

In three experiments (N = 48 3- to 4-year olds; 100 3- to 5-year olds; 54 4-year-olds), children who could see or feel a target toy, recognized when they had sufficient information to answer 'Which one is it?' and when they needed additional access. They were weaker at taking the informative modality of access when the choice was between seeing more of a partially visible toy and feeling it; at doing so when the target was completely hidden; and at reporting seeing or feeling as their source of knowledge of the target's identity having experienced both. Working understanding of the knowledge gained from seeing and feeling (identifying the target efficiently) was not necessarily in advance of explicit understanding (reporting the informative source).


Assuntos
Compreensão/fisiologia , Formação de Conceito/fisiologia , Emoções , Aprendizagem/fisiologia , Visão Ocular/fisiologia , Fatores Etários , Criança , Desenvolvimento Infantil , Pré-Escolar , Feminino , Humanos , Identificação Psicológica , Masculino , Neuropsicologia/métodos , Jogos e Brinquedos , Percepção Visual
20.
Neuropsychologia ; 108: 1-5, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29157999

RESUMO

Chromatic gratings can be uncomfortable to view and can evoke a large haemodynamic response. Both the discomfort and the amplitude of the haemodynamic response increase monotonically with the perceptual difference in the colour of the component bars of the grating, as registered by the separation in their chromaticity in the CIE 1976 UCS diagram. Individuals with photosensitive epilepsy exhibit epileptiform EEG activity in response to flickering light of alternate colours. The probability of the epileptiform response again increases monotonically with the separation of the colours in the CIE UCS diagram. We investigated whether alpha power, which is known to reflect the excitation of large populations of neurons, is similarly affected by the separation in chromaticity. Chromatic square-wave gratings with bars that differed in CIE UCS chromaticity were presented, together with a central fixation cross. In 18 non-clinical participants, alpha responses were recorded over the visual cortex (O1, Oz, O2, PO3, POz, PO4, P1, P2) and compared to responses in prefrontal cortex (F1, F2). Gratings comprised bars of two alternate colours that either had a small difference in chromaticity (mean CIE UCS separation of 0.03), a medium difference (mean separation of 0.19), or a large difference (mean separation of 0.43). The colour pairs had chromaticities that lay on the red-green, red-blue, or blue-green borders of the screen gamut. Regardless of the hue, the larger the separation in chromaticity, the greater the alpha desynchronization and the lower the alpha power (p = 0.004), but only in posterior electrodes (p < 0.001). Together this indicates that differences in colour evoke a cortical excitation that increases monotonically with the colour difference. In this respect the alpha response resembles the haemodynamic response.


Assuntos
Ritmo alfa , Percepção de Cores/fisiologia , Epilepsia Reflexa/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Córtex Visual/fisiopatologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA