Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 93(2): 981-991, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33315391

RESUMO

Mid-infrared (IR) ellipsometry of thin films and molecule layers at solid-liquid interfaces has been a challenge because of the absorption of light in water. It has been usually overcome by using configurations utilizing illumination through the solid substrate. However, the access to the solid-liquid interface in a broad spectral range is also challenging due to the limited transparency of most structural materials in the IR wavelength range. In this work, we propose a concept of a microfabricated analysis cell based on an IR-transparent Si membrane with advantages of a robust design, flexible adaptation to existing equipment, small volume, multiple-angle capabilities, broad wavelength range, and opportunities of multilayer applications for adjusted ranges of high sensitivity. The chamber was prepared by 3D micromachining technology utilizing deep reactive ion etching of a silicon-on-insulator wafer and bonded to a polydimethylsiloxane microfluidic injection system resulting in a cell volume of approximately 50 µL. The mechanical stability of the 2 and 5 µm-thick membranes was tested using different "backbone" reinforcement structures. It was proved that the 5 µm-thick membranes are stable at lateral cell sizes of 5 mm by 20 mm. The cell provides good intensity and adjustment capabilities on the stage of a commercial mid-IR ellipsometer. The membrane configuration also provides optical access to the sensing interfaces at a broad range of incident angles, which is a significant advantage in many potential sensing structure configurations, such as plasmonic, multilayer, 2D, or metamaterial applications.

2.
Langmuir ; 26(21): 16312-24, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20973580

RESUMO

Gold based model systems exhibiting the structural versatility of nanoparticle ensembles and being accessible for surface spectroscopic investigations are expected to provide new information about the adsorption of carbon monoxide, a key process influencing the CO oxidation activity of this noble metal in nanoparticulate form. Accordingly, in the present work the interaction of CO is studied with an ion bombardment modified Au(111) surface by means of a combination of photoelectron spectroscopy (XPS and UPS), sum frequency generation vibrational spectroscopy (SFG), and scanning tunneling microscopy (STM). While no adsorption was found on intact Au(111), data collected on the ion bombarded surface at cryogenic temperatures indicated the presence of stable CO adsorbates below 190 K. A quantitative evaluation of the C 1s XPS spectra and the surface morphology explored by STM revealed that the step edge sites created by ion bombardment are responsible for CO adsorption. The identification of the CO binding sites was confirmed by density functional theory (DFT) calculations. Annealing experiments up to room temperature showed that at temperatures above 190 K unstable adsorbates are formed on the surface under dynamic exposure conditions that disappeared immediately when gaseous CO was removed from the system. Spectroscopic data as well as STM records revealed that prolonged CO exposure at higher pressures of up to 1 mbar around room temperature facilitates massive atomic movements on the roughened surface, leading to its strong reordering toward the structure of the intact Au(111) surface, accompanied by the loss of the CO binding capacity.


Assuntos
Monóxido de Carbono/química , Ouro/química , Nanopartículas Metálicas/química , Adsorção , Íons/química , Simulação de Dinâmica Molecular , Oxirredução , Tamanho da Partícula , Pressão , Análise Espectral , Propriedades de Superfície
3.
Biosensors (Basel) ; 9(3)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349554

RESUMO

A gold-coated array of flow-through inverse pyramids applicable as substrate for entrapment and immobilization of micro-objects and for surface enhanced Raman spectroscopic measurements was fabricated using bulk micromachining techniques from silicon. Surface morphology, optical reflectance, immobilization properties, and surface enhanced Raman amplification of the array were modelled and characterized. It was found that the special perforated periodic 3D structure can be used for parallel particle and cell trapping and highly sensitive molecular analysis of the immobilized objects.


Assuntos
Técnicas Biossensoriais/instrumentação , Análise Espectral Raman/instrumentação , Ouro/química , Nanopartículas Metálicas/química , Microtecnologia/métodos , Tamanho da Partícula , Silício , Análise Espectral Raman/métodos , Propriedades de Superfície
4.
J Phys Chem B ; 110(17): 8701-14, 2006 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-16640426

RESUMO

Langmuir-Blodgett (LB) monomolecular layers of alkylhydroxamic acids and alkylphosphonic acids on copper and iron substrates have been studied by X-ray photoelectron spectroscopy (XPS) and sum-frequency vibrational spectroscopy. According to the XPS results, the structures of the hydroxamic acid and phosphonic acid Langmuir-Blodgett films are very similar: the thickness of the layer of the hydrocarbon tails is typically 1.9-2.1 nm, while the layer of headgroups is about 0.3-0.35 nm thick. The tilt angle of the carbon chains is estimated to be 20-30 degrees with respect to the sample surface normal, and the molecules are connected to the substrate via their headgroups. Analysis of the P 2p and N 1s lines indicates the presence of deprotonated headgroups. The substrate Cu 2p line includes a component which can be assigned to Cu(2+) ions in a thin Cu(OH)(2) layer. The deposition of LB layers led to significant decrease of the hydroxide-related signal, which indicates that binding of the headgroups to the surface is accompanied by the elimination of water molecules. The sum-frequency spectra also clearly indicate that well-ordered monolayers can be formed by the Langmuir-Blodgett technique. Since the non-resonant background from the metal substrates renders the analysis of the spectra more difficult, model system samples on glass were prepared. It was found that the alkyl chains of the adsorbed acids predominantly adopt the all-trans conformation and form an ordered structure. Upper limits for the mean tilt angle of the terminal methyl groups are approximately 10-20 degrees.

5.
J Phys Chem B ; 109(2): 872-8, 2005 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16866453

RESUMO

The equilibrium adsorption layers of symmetric chain alkyltrimethylammonium alkyl sulfates (Cn+.Cn- for n = 8, 12) were investigated at the air/water interface by sum-frequency vibrational spectroscopy in the function of the bulk surfactant concentration. To ensure the surface purity of the solutions investigated, an improved version of the foam fractionation method was used for the purification of the constituent ionic surfactants and the surface purity of the solutions was also checked. In the monolayer of the C12+.C12- surfactant, a two-dimensional first-order gas/liquid phase transition was observed. At surfactant bulk concentrations just exceeding the concentration corresponding to the phase transition, the monolayer is conformationally disordered, liquidlike, but with increasing bulk surfactant concentration the conformational order of the monolayer increases. The SFG spectra of the C8+.C8- monolayer did not indicate the occurrence of phase transition at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA