Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34376558

RESUMO

The mechanosensitive channel of small conductance (MscS) protects bacteria against hypoosmotic shock. It can sense the tension in the surrounding membrane and releases solutes if the pressure in the cell is getting too high. The membrane contacts MscS at sensor paddles, but lipids also leave the membrane and move along grooves between the paddles to reside as far as 15 Å away from the membrane in hydrophobic pockets. One sensing model suggests that a higher tension pulls lipids from the grooves back to the membrane, which triggers gating. However, it is still unclear to what degree this model accounts for sensing and what contribution the direct interaction of the membrane with the channel has. Here, we show that MscS opens when it is sufficiently delipidated by incubation with the detergent dodecyl-ß-maltoside or the branched detergent lauryl maltose neopentyl glycol. After addition of detergent-solubilized lipids, it closes again. These results support the model that lipid extrusion causes gating: Lipids are slowly removed from the grooves and pockets by the incubation with detergent, which triggers opening. Addition of lipids in micelles allows lipids to migrate back into the pockets, which closes the channel even in the absence of a membrane. Based on the distribution of the aliphatic chains in the open and closed conformation, we propose that during gating, lipids leave the complex on the cytosolic leaflet at the height of highest lateral tension, while on the periplasmic side, lipids flow into gaps, which open between transmembrane helices.


Assuntos
Membrana Celular/fisiologia , Ativação do Canal Iônico/fisiologia , Metabolismo dos Lipídeos , Mecanotransdução Celular/fisiologia , Domínio Catalítico , Lipídeos/química , Modelos Moleculares , Pressão Osmótica , Conformação Proteica
2.
Angew Chem Int Ed Engl ; 57(46): 15117-15121, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30276938

RESUMO

Deoxyribozymes are synthetic enzymes made of DNA that can catalyze the cleavage or formation of phosphodiester bonds and are useful tools for RNA biochemistry. Herein, we report new RNA-cleaving deoxyribozymes to interrogate the methylation status of target RNAs, thereby providing an alternative method for the biochemical validation of RNA methylation sites containing N6 -methyladenosine, which is the most wide-spread and extensively investigated natural RNA modification. The developed deoxyribozymes are sensitive to the presence of N6 -methyladenosine in RNA near the cleavage site. One class of these DNA enzymes shows faster cleavage of methylated RNA, while others are strongly inhibited by the modified nucleotide. The general applicability of the new deoxyribozymes is demonstrated for several examples of natural RNA sequences, including a lncRNA and a set of C/D box snoRNAs, which have been suggested to contain m6 A as a regulatory element that influences RNA folding and protein binding.


Assuntos
Adenosina/análogos & derivados , DNA Catalítico/metabolismo , RNA/metabolismo , Adenosina/análise , Adenosina/metabolismo , Sequência de Bases , Metilação , Conformação de Ácido Nucleico , RNA/química , Clivagem do RNA , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA