Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Pharmacol Exp Ther ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849143

RESUMO

While acute inflammation serves essential functions in maintaining tissue homeostasis, chronic inflammation is causally linked to many diseases. Macrophages are a major cell-type that orchestrates inflammatory processes. During inflammation, macrophages undergo polarization and activation, thereby mobilizing pro-inflammatory and anti-inflammatory transcriptional programs that regulate ensuing macrophage functions. Fatty acid binding protein 5 (FABP5) is a lipid chaperone highly expressed in macrophages. FABP5 deletion is implicated in driving macrophages towards an anti-inflammatory phenotype, yet signaling pathways regulated by macrophage-FABP5 have not been systematically profiled. We leveraged proteomic and phosphoproteomic approaches to characterize pathways modulated by FABP5 in M1 and M2 polarized bone marrow derived macrophages (BMDMs). Stable isotope labeling by amino acids (SILAC) based analysis of M1 and M2 polarized wild-type (WT) and FABP5 knockout (KO) BMDMs revealed numerous differentially regulated proteins and phosphoproteins. FABP5 deletion impacted downstream pathways associated with inflammation, cytokine production, oxidative stress, and kinase activity. Toll-like receptor 2 (TLR2) emerged as a novel target of FABP5 and pharmacological FABP5 inhibition blunted TLR2-mediated activation of downstream pathways, ascribing a novel role for FABP5 in TLR2 signaling. This study represents a comprehensive characterization of the impact of FABP5 deletion upon the proteomic and phosphoproteomic landscape of M1 and M2 polarized BMDMs. Loss of FABP5 altered pathways implicated in inflammatory responses, macrophage function, and TLR2 signaling. This work provides a foundation for future studies seeking to investigate the therapeutic potential of FABP5 inhibition in pathophysiological states resulting from dysregulated inflammatory signaling. Significance Statement This work employed quantitative proteomic and phosphoproteomic approaches to characterize the proteomic profiles of bone marrow derived macrophages obtained from wild-type and fatty acid binding protein 5 (FABP5) knockout mice. Our findings revealed multiple differentially regulated pathways in M1 and M2 polarized FABP5 knockout macrophages compared to wild-type controls, notably those related to inflammation. These results expand our understanding of FABP5 function in macrophages and support recent studies highlighting the therapeutic potential of targeting macrophage FABP5 to treat inflammatory diseases.

2.
PLoS Pathog ; 17(8): e1009861, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34398936

RESUMO

Microbial pathogens grow in a wide range of different morphologies that provide distinct advantages for virulence. In the fungal pathogen Candida albicans, adenylyl cyclase (Cyr1) is thought to be a master regulator of the switch to invasive hyphal morphogenesis and biofilm formation. However, faster growing cyr1Δ/Δ pseudorevertant (PR) mutants were identified that form hyphae in the absence of cAMP. Isolation of additional PR mutants revealed that their improved growth was due to loss of one copy of BCY1, the negative regulatory subunit of protein kinase A (PKA) from the left arm of chromosome 2. Furthermore, hyphal morphogenesis was improved in some of PR mutants by multigenic haploinsufficiency resulting from loss of large regions of the left arm of chromosome 2, including global transcriptional regulators. Interestingly, hyphal-associated genes were also induced in a manner that was independent of cAMP. This indicates that basal protein kinase A activity is an important prerequisite to induce hyphae, but activation of adenylyl cyclase is not needed. Instead, phosphoproteomic analysis indicated that the Cdc28 cyclin-dependent kinase and the casein kinase 1 family member Yck2 play key roles in promoting polarized growth. In addition, integrating transcriptomic and proteomic data reveals hyphal stimuli induce increased production of key transcription factors that contribute to polarized morphogenesis.


Assuntos
Candida albicans/crescimento & desenvolvimento , AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Hifas/crescimento & desenvolvimento , Morfogênese , Proteoma/análise , Transcriptoma , Adenilil Ciclases/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Hifas/genética , Hifas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
3.
Bioorg Chem ; 139: 106747, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37531819

RESUMO

Ceramides impact a diverse array of biological functions and have been implicated in disease pathogenesis. The enzyme neutral ceramidase (nCDase) is a zinc-containing hydrolase and mediates the metabolism of ceramide to sphingosine (Sph), both in cells and in the intestinal lumen. nCDase inhibitors based on substrate mimetics, for example C6-urea ceramide, have limited potency, aqueous solubility, and micelle-free fraction. To identify non-ceramide mimetic nCDase inhibitors, hit compounds from an HTS campaign were evaluated in biochemical, cell based and in silico modeling approaches. A majority of small molecule nCDase inhibitors contained pharmacophores capable of zinc interaction but retained specificity for nCDase over zinc-containing acid and alkaline ceramidases, as well as matrix metalloprotease-3 and histone deacetylase-1. nCDase inhibitors were refined by SAR, were shown to be substrate competitive and were active in cellular assays. nCDase inhibitor compounds were modeled by in silico DOCK screening and by molecular simulation. Modeling data supports zinc interaction and a similar compound binding pose with ceramide. nCDase inhibitors were identified with notably improved activity and solubility in comparison with the reference lipid-mimetic C6-urea ceramide.


Assuntos
Ceramidas , Ceramidase Neutra , Domínio Catalítico , Ceramidas/química , Ceramidase Neutra/antagonistas & inibidores , Esfingosina/química
4.
Anal Biochem ; 643: 114577, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35134389

RESUMO

Neutral ceramidase is a hydrolase of ceramide that has been implicated in multiple biologic processes, including inflammation and oncogenesis. Ceramides and other sphingolipids, belong to a family of N-acyl linked lipids that are biologically active in signaling, despite their limited structural functions. Ceramides are generally pro-apoptotic, while sphingosine and sphingosine-1-phosphate (S1P) exert proliferative and pro-oncogenic effects. Ceramidases are important regulators of ceramide levels that hydrolyze ceramide to sphingosine. Thus, ceramidase inhibition significantly increases the quantities of ceramide and its associated signaling. To better understand the function of ceramide, biochemical and cellular assays for enzymatic activity were developed and validated to identify inhibitors of human neutral ceramidase (nCDase). Here we review the measurement of nCDase activity both in vitro and in vivo.


Assuntos
Ceramidase Neutra/análise , Humanos , Ceramidase Neutra/genética , Ceramidase Neutra/metabolismo , Pseudomonas aeruginosa/enzimologia
5.
FASEB J ; 35(3): e21396, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33583073

RESUMO

We have recently reported that a specific pool of ceramide, located in the plasma membrane, mediated the effects of sublethal doses of the chemotherapeutic compound doxorubicin on enhancing cancer cell migration. We identified neutral sphingomyelinase 2 (nSMase2) as the enzyme responsible to generate this bioactive pool of ceramide. In this work, we explored the role of members of the protein phosphatases 1 family (PP1), and we identified protein phosphatase 1 alpha isoform (PP1 alpha) as the specific PP1 isoform to mediate this phenotype. Using a bioinformatics approach, we build a functional interaction network based on phosphoproteomics data on plasma membrane ceramide. This led to the identification of several ceramide-PP1 alpha downstream substrates. Studies on phospho mutants of ezrin (T567) and Scrib (S1378/S1508) demonstrated that their dephosphorylation is sufficient to enhance cell migration. In summary, we identified a mechanism where reduced doses of doxorubicin result in the dysregulation of cytoskeletal proteins and enhanced cell migration. This mechanism could explain the reported effects of doxorubicin worsening cancer metastasis in animal models.


Assuntos
Ceramidas/fisiologia , Doxorrubicina/farmacologia , Proteína Fosfatase 1/fisiologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células HeLa , Humanos
6.
J Biol Chem ; 295(9): 2544-2554, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31974161

RESUMO

Mammalian mitochondria assemble four complexes of the respiratory chain (RCI, RCIII, RCIV, and RCV) by combining 13 polypeptides synthesized within mitochondria on mitochondrial ribosomes (mitoribosomes) with over 70 polypeptides encoded in nuclear DNA, translated on cytoplasmic ribosomes, and imported into mitochondria. We have previously observed that mitoribosome assembly is inefficient because some mitoribosomal proteins are produced in excess, but whether this is the case for other mitochondrial assemblies such as the RCs is unclear. We report here that pulse-chase stable isotope labeling with amino acids in cell culture (SILAC) is a valuable technique to study RC assembly because it can reveal considerable differences in the assembly rates and efficiencies of the different complexes. The SILAC analyses of HeLa cells indicated that assembly of RCV, comprising F1/Fo-ATPase, is rapid with little excess subunit synthesis, but that assembly of RCI (i.e. NADH dehydrogenase) is far less efficient, with dramatic oversynthesis of numerous proteins, particularly in the matrix-exposed N and Q domains. Unassembled subunits were generally degraded within 3 h. We also observed differential assembly kinetics for individual complexes that were immunoprecipitated with complex-specific antibodies. Immunoprecipitation with an antibody that recognizes the ND1 subunit of RCI co-precipitated a number of proteins implicated in FeS cluster assembly and newly synthesized ubiquinol-cytochrome c reductase Rieske iron-sulfur polypeptide 1 (UQCRFS1), the Rieske FeS protein in RCIII, reflecting some coordination between RCI and RCIII assemblies. We propose that pulse-chase SILAC labeling is a useful tool for studying rates of protein complex assembly and degradation.


Assuntos
Complexo I de Transporte de Elétrons/genética , Proteínas Ferro-Enxofre/genética , Mitocôndrias/genética , NADH Desidrogenase/genética , ATPases Translocadoras de Prótons/genética , Técnicas de Cultura de Células/métodos , Núcleo Celular/genética , DNA/genética , Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/química , Células HeLa , Humanos , Marcação por Isótopo/métodos , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Ribossomos Mitocondriais/metabolismo , NADH Desidrogenase/química , Peptídeos/genética , Transporte Proteico/genética , ATPases Translocadoras de Prótons/química
7.
PLoS Pathog ; 15(12): e1008228, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31841561

RESUMO

Epstein-Barr virus (EBV) is an oncogenic herpesvirus and WHO class 1 carcinogen that resides in B lymphocytes of nearly all humans. While silent in most, EBV can cause endemic Burkitt lymphoma in children and post-transplant lymphoproliferative disorders/lymphomas in immunocompromised hosts. The pathogenesis of such lymphomas is multifactorial but to a large extent depends on EBV's ability to aggressively drive cellular DNA replication and B cell proliferation despite cell-intrinsic barriers to replication. One such barrier is oncogenic replication stress which hinders the progression of DNA replication forks. To understand how EBV successfully overcomes replication stress, we examined cellular replication forks in EBV-transformed B cells using iPOND (isolation of Proteins on Nascent DNA)-mass spectrometry and identified several cellular proteins that had not previously been linked to DNA replication. Of eight candidate replisome-associated proteins that we validated at forks in EBV-transformed cells and Burkitt lymphoma-derived cells, three zinc finger proteins (ZFPs) were upregulated early in B cells newly-infected with EBV in culture as well as expressed at high levels in EBV-infected B blasts in the blood of immunocompromised transplant recipients. Expressed highly in S- and G2-phase cells, knockdown of each ZFP resulted in stalling of proliferating cells in the S-phase, cleavage of caspase 3, and cell death. These proteins, newly-identified at replication forks of EBV-transformed and Burkitt lymphoma cells therefore contribute to cell survival and cell cycle progression, and represent novel targets for intervention of EBV-lymphomas while simultaneously offering a window into how the replication machinery may be similarly modified in other cancers.


Assuntos
Linfócitos B/virologia , Transformação Celular Viral/fisiologia , Infecções por Vírus Epstein-Barr/metabolismo , Origem de Replicação/fisiologia , Dedos de Zinco/fisiologia , Linfócitos B/patologia , Linfoma de Burkitt/virologia , Proliferação de Células/fisiologia , Herpesvirus Humano 4 , Humanos
8.
FASEB J ; 34(8): 10574-10589, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32568455

RESUMO

Cancer cells require extensive metabolic reprograming in order to provide the bioenergetics and macromolecular precursors needed to sustain a malignant phenotype. Mutant KRAS is a driver oncogene that is well-known for its ability to regulate the ERK and PI3K signaling pathways. However, it is now appreciated that KRAS can promote the tumor growth via upregulation of anabolic metabolism. We recently reported that oncogenic KRAS promotes a gene expression program of de novo lipogenesis in non-small cell lung cancer (NSCLC). To define the mechanism(s) responsible, we focused on the lipogenic transcription factor SREBP1. We observed that KRAS increases SREBP1 expression and genetic knockdown of SREBP1 significantly inhibited the cell proliferation of mutant KRAS-expressing cells. Unexpectedly, lipogenesis was not significantly altered in cells subject to SREBP1 knockdown. Carbon tracing metabolic studies showed a significant decrease in oxidative phosphorylation and RNA-seq data revealed a significant decrease in mitochondrial encoded subunits of the electron transport chain (ETC). Taken together, these data support a novel role, distinct from lipogenesis, of SREBP1 on mitochondrial function in mutant KRAS NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Mitocôndrias/metabolismo , Oncogenes/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Lipogênese/genética , Neoplasias Pulmonares/genética , Mutação/genética , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/genética , Regulação para Cima/genética
9.
FASEB J ; : fj201800204, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29906244

RESUMO

Oncogenic Kras mutations are one of the most common alterations in non-small cell lung cancer and are associated with poor response to treatment and reduced survival. Driver oncogenes, such as Kras are now appreciated for their ability to promote tumor growth via up-regulation of anabolic pathways. Therefore, we wanted to identify metabolic vulnerabilities in Kras-mutant lung cancer. Using the Kras LSL-G12D lung cancer model, we show that mutant Kras drives a lipogenic gene-expression program. Stable-isotope analysis reveals that mutant Kras promotes de novo fatty acid synthesis in vitro and in vivo. The importance of fatty acid synthesis in Kras-induced tumorigenesis was evident by decreased tumor formation in Kras LSL-G12D mice after treatment with a fatty acid synthesis inhibitor. Importantly, with gain and loss of function models of mutant Kras, we demonstrate that mutant Kras potentiates the growth inhibitory effects of several fatty acid synthesis inhibitors. These studies highlight the potential to target mutant Kras tumors by taking advantage of the lipogenic phenotype induced by mutant Kras.-Singh, A., Ruiz, C., Bhalla, K., Haley, J. A., Li, Q. K., Acquaah-Mensah, G., Montal, E., Sudini, K. R., Skoulidis, F., Wistuba, I. I., Papadimitrakopoulou, V., Heymach, J. V., Boros, L. G., Gabrielson, E., Carretero, J., Wong, K.-k., Haley, J. D., Biswal, S., Girnun, G. D. De novo lipogenesis represents a therapeutic target in mutant Kras non-small cell lung cancer.

10.
Adv Exp Med Biol ; 1140: 575-583, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347072

RESUMO

The global measurement of assembly and turnover of protein containing complexes within cells has advanced with the development of pulse stable isotope labelled amino acid approaches. Stable isotope labeling with amino acids in cell culture (SILAC) allows the incorporation of "light" 12-carbon amino acids or "heavy" 13-carbon amino acids into cells or organisms and the quantitation of proteins and peptides containing these amino acid tags using mass spectrometry. The use of these labels in pulse or pulse-chase scenarios has enabled measurements of macromolecular dynamics in cells, on time scales of several hours. Here we review advances with this approach and alternative or parallel strategies. We also examine the statistical considerations impacting datasets detailing mitochondrial assembly, to highlight key parameters in establishing significance and reproducibility.


Assuntos
Aminoácidos/química , Técnicas de Cultura de Células , Marcação por Isótopo , Espectrometria de Massas , Proteínas/análise , Reprodutibilidade dos Testes
11.
BMC Cancer ; 17(1): 830, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29212455

RESUMO

BACKGROUND: The epithelial to mesenchymal transition (EMT) plays a key role in lung cancer progression and drug resistance. The dynamics and stability of gene expression patterns as cancer cells transition from E to M at a systems level and relevance to patient outcomes are unknown. METHODS: Using comparative network and clustering analysis, we systematically analyzed time-series gene expression data from lung cancer cell lines H358 and A549 that were induced to undergo EMT. We also predicted the putative regulatory networks controlling EMT expression dynamics, especially for the EMT-dynamic genes and related these patterns to patient outcomes using data from TCGA. Example EMT hub regulatory genes were validated using RNAi. RESULTS: We identified several novel genes distinct from the static states of E or M that exhibited temporal expression patterns or 'periods' during the EMT process that were shared in different lung cancer cell lines. For example, cell cycle and metabolic genes were found to be similarly down-regulated where immune-associated genes were up-regulated after middle EMT stages. The presence of EMT-dynamic gene expression patterns supports the presence of differential activation and repression timings at the transcriptional level for various pathways and functions during EMT that are not detected in pure E or M cells. Importantly, the cell line identified EMT-dynamic genes were found to be present in lung cancer patient tissues and associated with patient outcomes. CONCLUSIONS: Our study suggests that in vitro identified EMT-dynamic genes capture elements of gene EMT expression dynamics at the patient level. Measurement of EMT dynamic genes, as opposed to E or M only, is potentially useful in future efforts aimed at classifying patient's responses to treatments based on the EMT dynamics in the tissue.


Assuntos
Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Neoplasias Pulmonares/genética , Linhagem Celular Tumoral , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Transcriptoma/genética
12.
Res Sq ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37790380

RESUMO

Background: While acute inflammation serves essential functions in maintaining tissue homeostasis, chronic inflammation is causally linked to many diseases. Macrophages are a major cell-type that orchestrates inflammatory processes. During inflammation, macrophages undergo polarization and activation, thereby mobilizing pro-inflammatory and anti-inflammatory transcriptional programs that regulate ensuing macrophage functions. Fatty acid binding protein 5 (FABP5) is a lipid chaperone that is highly expressed in macrophages. FABP5 deletion is implicated in driving macrophages towards an anti-inflammatory phenotype, yet the signaling pathways regulated by macrophage FABP5 have not been systematically profiled. Herein, we leveraged proteomic and phosphoproteomic approaches to characterize pathways modulated by FABP5 in M1 and M2 polarized bone marrow derived macrophages (BMDMs). Results: Stable isotope labeling by amino acids (SILAC) based analysis of M1 and M2 polarized wild-type (WT) and FABP5 knockout (KO) BMDMs revealed numerous differentially regulated proteins and phosphoproteins. FABP5 deletion impacted several downstream pathways associated with inflammation, cytokine production, oxidative stress, and kinase activity. Kinase enrichment analysis based on phosphorylated sites revealed key kinases, including members of the GRK family, that were altered in FABP5 KO BMDMs. Reactive oxygen species (ROS) levels were elevated in M1 polarized KO macrophages, consistent with the differential protein expression profiles. Conclusions: This study represents a comprehensive characterization of the impact of FABP5 deletion upon the proteomic and phosphoproteomic landscape of M1 and M2 polarized BMDMs. Loss of FABP5 altered multiple pathways implicated in inflammatory responses and macrophage function. This work provides a foundation for future studies seeking to investigate the therapeutic potential of FABP5 inhibition in pathophysiological states resulting from dysregulated inflammatory signaling.

13.
Mol Ther Oncolytics ; 28: 277-292, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36911069

RESUMO

Lung cancer is the leading cause of cancer-related deaths in the United States with non-small cell lung cancer (NSCLC) accounting for most cases. Despite advances in cancer therapeutics, the 5-year survival rate has remained poor due to several contributing factors, including its resistance to therapeutics. Therefore, there is a pressing need to develop therapeutics that can overcome resistance. Non-coding RNAs, including microRNAs (miRNAs), have been found to contribute to cancer resistance and therapeutics by modulating the expression of several targets involving multiple key mechanisms. In this study, we investigated the therapeutic potential of miR-129 modified with 5-fluorouracil (5-FU) in NSCLC. Our results show that 5-FU modified miR-129 (5-FU-miR-129) inhibits proliferation, induces apoptosis, and retains function as an miRNA in NSCLC cell lines A549 and Calu-1. Notably, we observed that 5-FU-miR-129 was able to overcome resistance to tyrosine kinase inhibitors and chemotherapy in cell lines resistant to erlotinib or 5-FU. Furthermore, we observed that the inhibitory effect of 5-FU-miR-129 can also be achieved in NSCLC cells under vehicle-free conditions. Finally, 5-FU-miR-129 inhibited NSCLC tumor growth and extended survival in vivo without toxic side effects. Altogether, our results demonstrate the potential of 5-FU-miR-129 as a highly potent cancer therapeutic in NSCLC.

14.
Proteomes ; 11(2)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37368466

RESUMO

Receptor tyrosine kinases (RTKs) can show extensive crosstalk, directly and indirectly. Elucidating RTK crosstalk remains an important goal in the clinical combination of anti-cancer therapies. Here, we present mass spectrometry and pharmacological approaches showing the hepatocyte growth factor receptor (MET)-promoting tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) and other membrane receptors in MET-amplified H1993 NSCLC cells. Conversely, in H292 wt-EGFR NSCLC cells, EGFR promotes the tyrosine phosphorylation of MET. Reciprocal regulation of the EGFR and insulin receptor (IR) was observed in the GEO CRC cells, where inhibition of the EGFR drives tyrosine phosphorylation of the insulin receptor. Similarly, in platelet-derived growth factor receptor (PDGFR)-amplified H1703 NSCLC cells, inhibition of the EGFR promotes the tyrosine phosphorylation of the PDGFR. These RTK interactions are used to illustrate basic principles applicable to other RTK signaling networks. More specifically, we focus on two types of RTK interaction: (1) co-option of one RTK by another and (2) reciprocal activation of one receptor following the inhibition of a distinct receptor.

15.
J Med Chem ; 66(11): 7454-7474, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37195170

RESUMO

Bruton's tyrosine kinase (BTK) is a target for treating B-cell malignancies and autoimmune diseases, and several BTK inhibitors are already approved for use in humans. Heterobivalent BTK protein degraders are also in development, based on the premise that proteolysis targeting chimeras (PROTACs) may provide additional therapeutic benefits. However, most BTK PROTACs are based on the BTK inhibitor ibrutinib raising concerns about their selectivity profiles, given the known off-target effects of ibrutinib. Here, we disclose the discovery and in vitro characterization of BTK PROTACs based on the selective BTK inhibitor GDC-0853 and the cereblon recruitment ligand pomalidomide. PTD10 is a highly potent BTK degrader (DC50 0.5 nM) that inhibited cell growth and induced apoptosis at lower concentrations than the two parent molecules, as well as three previously reported BTK PROTACs, and had improved selectivity compared to ibrutinib-based BTK PROTACs.


Assuntos
Linfócitos B , Proteínas Tirosina Quinases , Quimera de Direcionamento de Proteólise , Humanos , Tirosina Quinase da Agamaglobulinemia , Linfócitos B/metabolismo , Proliferação de Células , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quimera de Direcionamento de Proteólise/química , Quimera de Direcionamento de Proteólise/farmacologia
16.
Cell Rep ; 39(7): 110834, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584675

RESUMO

The evolution of zinc (Zn) as a protein cofactor altered the functional landscape of biology, but dependency on Zn also created an Achilles' heel, necessitating adaptive mechanisms to ensure Zn availability to proteins. A debated strategy is whether metallochaperones exist to prioritize essential Zn-dependent proteins. Here, we present evidence for a conserved family of putative metal transferases in human and fungi, which interact with Zn-dependent methionine aminopeptidase type I (MetAP1/Map1p/Fma1). Deletion of the putative metal transferase in Saccharomyces cerevisiae (ZNG1; formerly YNR029c) leads to defective Map1p function and a Zn-deficiency growth defect. In vitro, Zng1p can transfer Zn2+ or Co2+ to apo-Map1p, but unlike characterized copper chaperones, transfer is dependent on GTP hydrolysis. Proteomics reveal mis-regulation of the Zap1p transcription factor regulon because of loss of ZNG1 and Map1p activity, suggesting that Zng1p is required to avoid a compounding effect of Map1p dysfunction on survival during Zn limitation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Transferases , Zinco , Humanos , Aminopeptidases/genética , Aminopeptidases/metabolismo , Guanosina Trifosfato , Metais/metabolismo , Metionina , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Transferases/fisiologia , Zinco/metabolismo
17.
Cell Death Dis ; 12(1): 126, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500390

RESUMO

Breast cancer is the leading cause of cancer-related death in women worldwide. Human epidermal growth factor receptor 2 (HER2)-positive subtype comprises 20% of sporadic breast cancers and is an aggressive disease. While targeted therapies have greatly improved its management, primary and acquired resistance remain a major roadblock to making it a curable malignancy. Ganetespib, an Hsp90 (Heat shock protein 90) small molecule inhibitor, shows preferential efficacy in HER2-positive breast cancer, including therapy-refractory cases, and has an excellent safety profile in ongoing clinical trials (38 in total, six on breast cancer). However, Ganetespib itself evokes acquired resistance, which is a significant obstacle to its clinical advancement. Here, we show that Ganetespib potently, albeit temporarily, suppresses HER2-positive breast cancer in genetic mouse models, but the animals eventually succumb via acquired resistance. We found that Ganetespib-resistant tumors upregulate several compensatory HSPs, as well as a wide network of phospho-activated receptor tyrosine kinases (RTKs), many of which are HSP clients. Downstream of p-RTKs, the MAPK pathway remains suppressed in the resistant tumors, as is HER2 itself. In contrast, the p-RTK effector Akt is stabilized and phospho-activated. Notably, pharmacological inhibition of Akt significantly delays acquired Ganetespib resistance, by 50%. These data establish Akt as a unifying actionable node downstream of the broadly upregulated HSP/p-RTK resistance program and suggests that Akt co-targeting with Ganetespib may be a superior therapeutic strategy in the clinic.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proteínas de Choque Térmico HSP90/uso terapêutico , Triazóis/uso terapêutico , Animais , Neoplasias da Mama/patologia , Feminino , Proteínas de Choque Térmico HSP90/farmacologia , Humanos , Camundongos , Triazóis/farmacologia
18.
ACS Infect Dis ; 7(9): 2755-2763, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34357770

RESUMO

The translation of time-dependent drug-target occupancy to extended pharmacological activity at low drug concentration depends on factors such as target vulnerability and the rate of target turnover. Previously, we demonstrated that the postantibiotic effect (PAE) caused by inhibitors of bacterial drug targets could be used to assess target vulnerability, and that high levels of target vulnerability coupled with relatively low rates of target resynthesis resulted in a strong correlation between drug-target residence time and the PAE following compound washout. Although the residence time of inhibitors on UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) in Pseudomonas aeruginosa (paLpxC) results in significant PAE, inhibitors of the equivalent enzyme in Escherichia coli (ecLpxC) do not cause a PAE. Hyperactivity of the fatty acid biosynthesis enzyme FabZ or the inclusion of sub-MIC levels of azithromycin lead to the observation of a PAE for three inhibitors of ecLpxC. FabZ hyperactivity has been shown to stabilize ecLpxC, and using mass spectrometry, we demonstrate that the appearance of a PAE can be directly linked to a 3-fold increase in the stability of ecLpxC. These studies substantiate the importance of target turnover in time-dependent drug activity.


Assuntos
Antibacterianos , Preparações Farmacêuticas , Antibacterianos/farmacologia , Bactérias , Escherichia coli/genética , Pseudomonas aeruginosa
19.
SLAS Discov ; 26(1): 113-121, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32734807

RESUMO

There is interest in developing inhibitors of human neutral ceramidase (nCDase) because this enzyme plays a critical role in colon cancer. There are currently no potent or clinically effective inhibitors for nCDase reported to date, so we adapted a fluorescence-based enzyme activity method to a high-throughput screening format. We opted to use an assay whereby nCDase hydrolyzes the substrate RBM 14-16, and the addition of NaIO4 acts as an oxidant that releases umbelliferone, resulting in a fluorescent signal. As designed, test compounds that act as ceramidase inhibitors will prevent the hydrolysis of RBM 14-16, thereby decreasing fluorescence. This assay uses a 1536-well plate format with excitation in the blue spectrum of light energy, which could be a liability, so we incorporated a counterscreen that allows for rapid selection against fluorescence artifacts to minimize false-positive hits. The high-throughput screen of >650,000 small molecules found several lead series of hits. Multiple rounds of chemical optimization ensued with improved potency in terms of IC50 and selectivity over counterscreen assays. This study describes the first large-scale high-throughput optical screening assay for nCDase inhibitors that has resulted in leads that are now being pursued in crystal docking studies and in vitro drug metabolism and pharmacokinetics (DMPK).


Assuntos
Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Ceramidase Neutra/antagonistas & inibidores , Ceramidase Neutra/química , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ativação Enzimática/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Bibliotecas de Moléculas Pequenas
20.
Chem Phys Lipids ; 219: 1-14, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30641043

RESUMO

In the last ten years, mass spectrometry (MS) has become the favored analytical technique for sphingolipid (SPL) analysis and measurements. Indeed MS has the unique ability to both acquire sensitive and quantitative measurements and to resolve the molecular complexity characteristic of SPL molecules, both across the different SPL families and within the same SPL family. Currently, two complementary MS-based approaches are used for lipid research: analysis of lipid extracts, mainly by infusion electrospray ionization (ESI), and mass spectrometry imaging (MSI) from a sample surface (i.e. intact tissue sections, cells, model membranes, thin layer chromatography plates) (Fig. 1). The first allows for sensitive and quantitative information about total lipid molecular species from a given specimen from which lipids have been extracted and chromatographically separated prior to the analysis; the second, albeit generally less quantitative and less specific in the identification of molecular species due to the complexity of the sample, allows for spatial information of lipid molecules from biological specimens. In the field of SPL research, MS analysis of lipid extracts from biological samples has been commonly utilized to implicate the role of these lipids in specific biological functions. On the other hand, the utilization of MSI in SPL research represents a more recent development that has started to provide interesting descriptive observations regarding the distribution of specific classes of SPLs within tissues. Thus, it is the aim of this review to discuss how MSI technology has been employed to extend the study of SPL metabolism and the type of information that has been obtained from model membranes, single cells and tissues. We envision this discussion as a complementary compendium to the excellent technical reviews recently published about the specifics of MSI technologies, including their application to SPL analysis (Fuchs et al., 2010; Berry et al., 2011; Ellis et al., 2013; Eberlin et al., 2011; Kraft and Klitzing, 2014).


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massa de Íon Secundário , Esfingolipídeos/análise , Animais , Encéfalo/diagnóstico por imagem , Membrana Celular/química , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA