RESUMO
Lymphangiogenesis is a dynamic process that involves the directed migration of lymphatic endothelial cells (LECs) to form lymphatic vessels. The molecular mechanisms that underpin lymphatic vessel patterning are not fully elucidated and, to date, no global regulator of lymphatic vessel guidance is known. In this study, we identify the transmembrane cell signalling receptor Plexin D1 (Plxnd1) as a negative regulator of both lymphatic vessel guidance and lymphangiogenesis in zebrafish. plxnd1 is expressed in developing lymphatics and is required for the guidance of both the trunk and facial lymphatic networks. Loss of plxnd1 is associated with misguided intersegmental lymphatic vessel growth and aberrant facial lymphatic branches. Lymphatic guidance in the trunk is mediated, at least in part, by the Plxnd1 ligands, Semaphorin 3AA and Semaphorin 3C. Finally, we show that Plxnd1 normally antagonises Vegfr/Erk signalling to ensure the correct number of facial LECs and that loss of plxnd1 results in facial lymphatic hyperplasia. As a global negative regulator of lymphatic vessel development, the Sema/Plxnd1 signalling pathway is a potential therapeutic target for treating diseases associated with dysregulated lymphatic growth.
Assuntos
Vasos Linfáticos , Semaforinas , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Células Endoteliais/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Linfangiogênese/genética , Vasos Linfáticos/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Proteínas de Transporte/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
The purpose of this document is to provide guidance for establishing and maintaining growth and development of flow cytometry shared resource laboratories. While the best practices offered in this manuscript are not intended to be universal or exhaustive, they do outline key goals that should be prioritized to achieve operational excellence and meet the needs of the scientific community. Additionally, this document provides information on available technologies and software relevant to shared resource laboratories. This manuscript builds on the work of Barsky et al. 2016 published in Cytometry Part A and incorporates recent advancements in cytometric technology. A flow cytometer is a specialized piece of technology that require special care and consideration in its housing and operations. As with any scientific equipment, a thorough evaluation of the location, space requirements, auxiliary resources, and support is crucial for successful operation. This comprehensive resource has been written by past and present members of the International Society for Advancement of Cytometry (ISAC) Shared Resource Laboratory (SRL) Emerging Leaders Program https://isac-net.org/general/custom.asp?page=SRL-Emerging-Leaders with extensive expertise in managing flow cytometry SRLs from around the world in different settings including academia and industry. It is intended to assist in establishing a new flow cytometry SRL, re-purposing an existing space into such a facility, or adding a flow cytometer to an individual lab in academia or industry. This resource reviews the available cytometry technologies, the operational requirements, and best practices in SRL staffing and management.
Assuntos
Laboratórios , Software , Citometria de FluxoRESUMO
The metal-ligand charge transfer (3MLCT) and phosphorescence-quenching metal-centered (3MC) states of the helicate and mesocate diastereoisomers of a double-stranded dinuclear polypyridylruthenium(II) complex have been investigated using ultrafast transient absorption spectroscopy. At 294 K, transient signals of the helicate decayed significantly slower than those of the mesocate, whereas at 77 K, no clear contrast in kinetics was observed. Contributions to excited-state decay from high-lying 3MLCT states were identified at both temperatures. Spectroscopic data (294 K) suggest that the 3MC state of the helicate lies above the 3MLCT and that the reverse is true for the mesocate; this was further validated by density functional theory calculations. The stabilization of the 3MC state relative to the 3MLCT state in the mesocate was explained by a reduction in ligand field strength due to distortion near the ligand bridge, which causes further deviation from octahedral geometry compared to the helicate. This work illustrates how minor structural differences can significantly influence excited state dynamics.
RESUMO
Proteins achieve efficient energy storage and conversion through electron transfer along a series of redox cofactors. Multiheme cytochromes are notable examples. These proteins transfer electrons over distance scales of several nanometers to >10 µm and in so doing they couple cellular metabolism with extracellular redox partners including electrodes. Here, we report pump-probe spectroscopy that provides a direct measure of the intrinsic rates of heme-heme electron transfer in this fascinating class of proteins. Our study took advantage of a spectrally unique His/Met-ligated heme introduced at a defined site within the decaheme extracellular MtrC protein of Shewanella oneidensis We observed rates of heme-to-heme electron transfer on the order of 109 s-1 (3.7 to 4.3 Å edge-to-edge distance), in good agreement with predictions based on density functional and molecular dynamics calculations. These rates are among the highest reported for ground-state electron transfer in biology. Yet, some fall 2 to 3 orders of magnitude below the Moser-Dutton ruler because electron transfer at these short distances is through space and therefore associated with a higher tunneling barrier than the through-protein tunneling scenario that is usual at longer distances. Moreover, we show that the His/Met-ligated heme creates an electron sink that stabilizes the charge separated state on the 100-µs time scale. This feature could be exploited in future designs of multiheme cytochromes as components of versatile photosynthetic biohybrid assemblies.
Assuntos
Grupo dos Citocromos c/metabolismo , Citocromos/metabolismo , Elétrons , Heme/metabolismo , Histidina/metabolismo , Metionina/metabolismo , Shewanella/metabolismo , Grupo dos Citocromos c/química , Citocromos/química , Transporte de Elétrons , Heme/química , Histidina/química , Metionina/química , Simulação de Dinâmica Molecular , Nanofios , OxirreduçãoRESUMO
A homologue of binding immunoglobulin protein/BiP-IRL201805 alters the function of immune cells in pre-clinical in vivo and in vitro studies. The aim of the study was to select biomarkers that clearly delineate between RA patients who respond to IRL201805 and placebo patients and reveal the immunological mode of action of IRL201805 driving the extended pharmacodynamics observed in responding patients. Biomarkers that distinguished between responding patients and placebo patients included downregulation of serum interferon-γ and IL-1ß; upregulation of anti-inflammatory mediators, serum soluble CTLA-4, and intracellular monocyte expression of IDO; and sustained increased CD39 expression on CD3+CD4+CD25hi CD127lo regulatory T cells. In the responding patients, selected biomarkers verified that the therapeutic effect could be continuous for at least 12 weeks post-infusion. In secondary co-culture, pre-infusion PBMCs cultured 1:1 with autologous PBMCs, isolated at later time-points during the trial, showed significantly inhibited IL-6 and IL-1ß production upon anti-CD3/CD28 stimulation demonstrating IRL201805 alters the function of immune cells leading to prolonged pharmacodynamics confirmed by biomarker differences. IRL201805 may be the first of a new class of biologic drug providing long-term drug-free therapy in RA.
Assuntos
Artrite Reumatoide , Biomarcadores , Tolerância Imunológica , Humanos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Feminino , Masculino , Tolerância Imunológica/efeitos dos fármacos , Pessoa de Meia-Idade , Adulto , Interleucina-1beta/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Idoso , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/metabolismoRESUMO
With the increase in the number of parameters that can be detected at the single-cell level using flow and mass cytometry, there has been a paradigm shift when handling and analyzing data sets. Cytometry Shared Resource Laboratories (SRLs) already take on the responsibility of ensuring users have resources and training in experimental design and operation of instruments to promote high-quality data acquisition. However, the role of SRLs downstream, during data handling and analysis, is not as well defined and agreed upon. Best practices dictate a central role for SRLs in this process as they are in a pivotal position to support research in this context, but key considerations about how to effectively fill this role need to be addressed. Two surveys and one workshop at CYTO 2022 in Philadelphia, PA, were performed to gain insight into what strategies SRLs are successfully employing to support high-dimensional data analysis and where SRLs and their users see limitations and long-term challenges in this area. Recommendations for high-dimensional data analysis support provided by SRLs will be offered and discussed.
Assuntos
Laboratórios , Projetos de Pesquisa , Confiabilidade dos Dados , Citometria de Fluxo/métodosRESUMO
Light intensity and temperature independently impact all parts of the photosynthetic machinery in plants and algae. Yet to date, the vast majority of pulse amplitude modulated (PAM) chlorophyll a fluorescence measurements have been performed at well-defined light intensities, but rarely at well-defined temperatures. In this work, we show that PAM measurements performed at various temperatures produce vastly different results in the chlorophyte Chlorella vulgaris. Using a recently developed Phenoplate technique to map quantum yield of Photosystem II (Y(II)) and non-photochemical quenching (NPQ) as a function of temperature, we show that the fast-relaxing NPQ follows an inverse normal distribution with respect to temperature and appears insensitive to previous temperature acclimation. The slow-relaxing or residual NPQ after 5 minutes of dark recovery follows a normal distribution similar to Y(II) but with a peak in the higher temperature range. Surprisingly, higher slow- and fast-relaxing NPQ values were observed in high-light relative to low-light acclimated cultures. Y(II) values peaked at the adaptation temperature regardless of temperature or light acclimation. Our novel findings show the complete temperature working spectrum of Y(II) and how excess energy quenching is managed across a wide range of temperatures in the model microalgal species C. vulgaris. Finally, we draw attention to the fact that the effect of the temperature component in PAM measurements has been wildly underestimated, and results from experiments at room temperature can be misleading.
Assuntos
Chlorella vulgaris , Chlorella vulgaris/metabolismo , Clorofila A , Clorofila , Termografia , Fotossíntese , Luz , Temperatura , Fluorescência , Complexo de Proteína do Fotossistema II/metabolismoRESUMO
Absolute second-order rate coefficients for the reaction of the N- and C-protected amino acids tyrosine (Tyr), tryptophan (Trp), methionine (Met) and proline (Pro) with triethylamine-derived aliphatic peroxyl radical TEAOOË, which was used as a model for lipid peroxyl radicals, were determined using laser flash photolysis. For Ac-Tyr-OMe a rate coefficient of 1.4 × 104 M-1 s-1 was obtained, whereas the reactions with Ac-Trp-OMe and Ac-Met-OMe were slower by a factor of 4 and 6, respectively. For the reaction with Ac-Pro-OMe only an upper value of 103 M-1 s-1 could be determined, suggesting that Pro residues are not effective traps for lipid peroxyl radicals. Density functional theory (DFT) calculations revealed that the reactions proceed via radical hydrogen atom transfer (HAT) from the Cα position, indicating that the rate is determined by the exothermicity of the reaction. In the case of Ac-Tyr-OMe, HAT from the phenolic OH group is the kinetically preferred pathway, which shuts down when hydrogen bonding with an amine occurs. In an alkaline environment, where the phenolic OH group is deprotonated, the reaction is predicted to occur preferably at Cß, likely through a proton-coupled electron transfer (PCET) mechanism.
RESUMO
To study complex human activity and how it is perceived and remembered, it is valuable to have large-scale, well-characterized stimuli that are representative of such activity. We present the Multi-angle Extended Three-dimensional Activities (META) stimulus set, a structured and highly instrumented set of extended event sequences performed in naturalistic settings. Performances were captured with two color cameras and a Kinect v2 camera with color and depth sensors, allowing the extraction of three-dimensional skeletal joint positions. We tracked the positions and identities of objects for all chapters using a mixture of manual coding and an automated tracking pipeline, and hand-annotated the timings of high-level actions. We also performed an online experiment to collect normative event boundaries for all chapters at a coarse and fine grain of segmentation, which allowed us to quantify event durations and agreement across participants. We share these materials publicly to advance new discoveries in the study of complex naturalistic activity.
Assuntos
Cognição , HumanosRESUMO
We report a new composite material consisting of silver nanoparticles decorated with three-dimensional molecular organic cages based on light-absorbing porphyrins. The porphyrin cages serve to both stabilize the particles and allow diffusion and trapping of small molecules close to the metallic surface. Combining these two photoactive components results in a Fano-resonant interaction between the porphyrin Soret band and the nanoparticle-localised surface-plasmon resonance. Time-resolved spectroscopy revealed the silver nanoparticles transfer up to 37 % of their excited-state energy to the stabilising layer of porphyrin cages. These unusual photophysics cause a 2-fold current increase in photoelectrochemical water-splitting measurements. The composite structure provides a compelling proof of concept for advanced photosensitiser systems with intrinsic porosity for photocatalytic and sensing applications.
RESUMO
Microbeam radiotherapy could help to cure malignant tumours which are currently still considered therapy-resistant. With an irradiation target in the thoracic cavity, the heart would be one of the most important organs at risk. To assess the acute adverse effects of microbeam irradiation in the heart, a powerful ex vivo tool was created by combining the Langendorff model of the isolated beating mammalian heart with X-Tream dosimetry. In a first pilot experiment conducted at the Biomedical and Imaging Beamline of the Australian Synchrotron, the system was tested at a microbeam peak dose approximately ten times higher than the anticipated future microbeam irradiation treatment doses. The entire heart was irradiated with a dose of 4000â Gy at a dose rate of >6000â Gyâ s-1, using an array of 50â µm-wide microbeams spaced at a centre-to-centre distance of 400â µm. Although temporary arrhythmias were seen, they reverted spontaneously to a stable rhythm and no cardiac arrest occurred. This amazing preservation of cardiac function is promising for future therapeutic approaches.
Assuntos
Radiometria , Síncrotrons , Animais , Austrália , Mamíferos , Radiometria/métodosRESUMO
Bandgap instability due to light-induced phase segregation in mixed-halide perovskites presents a major challenge for their future commercial use. Here we demonstrate that photoinduced halide-ion segregation can be completely reversed at sufficiently high illumination intensities, enabling control of the optical bandgap of a mixed-halide perovskite single crystal by optimizing the input photogenerated carrier density. We develop a polaron-based two-dimensional lattice model that rationalizes the experimentally observed phenomena by assuming that the driving force for photoinduced halide segregation is dependent on carrier-induced strain gradients that vanish at high carrier densities. Using illumination sources with different excitation intensities, we demonstrate write-read-erase experiments showing that it is possible to store information in the form of latent images over several minutes. The ability to control the local halide-ion composition with light intensity opens opportunities for the use of mixed-halide perovskites in concentrator and tandem solar cells, as well as in high-power light-emissive devices and optical memory applications.
RESUMO
For over a decade, Scotland has implemented and operationalized a system of Safe Havens, which provides secure analytics platforms for researchers to access linked, deidentified electronic health records (EHRs) while managing the risk of unauthorized reidentification. In this paper, a perspective is provided on the state-of-the-art Scottish Safe Haven network, including its evolution, to define the key activities required to scale the Scottish Safe Haven network's capability to facilitate research and health care improvement initiatives. A set of processes related to EHR data and their delivery in Scotland have been discussed. An interview with each Safe Haven was conducted to understand their services in detail, as well as their commonalities. The results show how Safe Havens in Scotland have protected privacy while facilitating the reuse of the EHR data. This study provides a common definition of a Safe Haven and promotes a consistent understanding among the Scottish Safe Haven network and the clinical and academic research community. We conclude by identifying areas where efficiencies across the network can be made to meet the needs of population-level studies at scale.
Assuntos
Registros Eletrônicos de Saúde , Privacidade , Humanos , EscóciaRESUMO
BACKGROUND: COVID-19 data have been generated across the United Kingdom as a by-product of clinical care and public health provision, as well as numerous bespoke and repurposed research endeavors. Analysis of these data has underpinned the United Kingdom's response to the pandemic, and informed public health policies and clinical guidelines. However, these data are held by different organizations, and this fragmented landscape has presented challenges for public health agencies and researchers as they struggle to find relevant data to access and interrogate the data they need to inform the pandemic response at pace. OBJECTIVE: We aimed to transform UK COVID-19 diagnostic data sets to be findable, accessible, interoperable, and reusable (FAIR). METHODS: A federated infrastructure model (COVID - Curated and Open Analysis and Research Platform [CO-CONNECT]) was rapidly built to enable the automated and reproducible mapping of health data partners' pseudonymized data to the Observational Medical Outcomes Partnership Common Data Model without the need for any data to leave the data controllers' secure environments, and to support federated cohort discovery queries and meta-analysis. RESULTS: A total of 56 data sets from 19 organizations are being connected to the federated network. The data include research cohorts and COVID-19 data collected through routine health care provision linked to longitudinal health care records and demographics. The infrastructure is live, supporting aggregate-level querying of data across the United Kingdom. CONCLUSIONS: CO-CONNECT was developed by a multidisciplinary team. It enables rapid COVID-19 data discovery and instantaneous meta-analysis across data sources, and it is researching streamlined data extraction for use in a Trusted Research Environment for research and public health analysis. CO-CONNECT has the potential to make UK health data more interconnected and better able to answer national-level research questions while maintaining patient confidentiality and local governance procedures.
Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , Reino Unido/epidemiologiaRESUMO
Lymphatic vessels are known to be derived from veins; however, recent lineage-tracing experiments propose that specific lymphatic networks may originate from both venous and non-venous sources. Despite this, direct evidence of a non-venous lymphatic progenitor is missing. Here, we show that the zebrafish facial lymphatic network is derived from three distinct progenitor populations that add sequentially to the developing facial lymphatic through a relay-like mechanism. We show that while two facial lymphatic progenitor populations are venous in origin, the third population, termed the ventral aorta lymphangioblast (VA-L), does not sprout from a vessel; instead, it arises from a migratory angioblast cell near the ventral aorta that initially lacks both venous and lymphatic markers, and contributes to the facial lymphatics and the hypobranchial artery. We propose that sequential addition of venous and non-venous progenitors allows the facial lymphatics to form in an area that is relatively devoid of veins. Overall, this study provides conclusive, live imaging-based evidence of a non-venous lymphatic progenitor and demonstrates that the origin and development of lymphatic vessels is context-dependent.
Assuntos
Vasos Linfáticos/fisiologia , Células-Tronco/fisiologia , Veias/fisiologia , Peixe-Zebra/fisiologia , Animais , Movimento Celular/fisiologia , Células Endoteliais/fisiologiaRESUMO
Adipose dysfunction is the primary defect in obesity that contributes to the development of dyslipidemia, insulin resistance, cardiovascular diseases, type 2 diabetes, non-alcoholic fatty liver disease (NAFLD) and some cancers. Previously, we demonstrated the development of NAFLD in lipocalin-type prostaglandin D2 synthase (L-PGDS) knockout mice regardless of diet. In the present study, we examined the role of L-PGDS in adipose in response to a high fat diet. We observed decreased expression of L-PGDS in adipose tissue and concomitant lower plasma levels in a dietary model of obesity as well as in insulin resistant 3T3-L1 adipocytes. We show reduced adiponectin expression and phosphorylation of AMPK in white adipose tissue of L-PGDS KO mice after 14 weeks on a high fat diet as compared to control C57BL/6 mice. We also observe an increased fat content in L-PGDS KO mice as demonstrated by adipocyte hypertrophy and increased expression of lipogenenic genes. We confirmed our in vivo findings in in vitro 3T3-L1 adipocytes, using an enzymatic inhibitor of L-PGDS (AT56). Rosiglitazone treatment drastically increased L-PGDS expression in insulin resistant 3T3-L1 adipocytes and increased adiponectin expression and AMPK phosphorylation in AT56 treated 3T3-L1 adipocytes. We conclude that the absence of L-PGDS has a deleterious effect on adipose tissue functioning, which further reduces insulin sensitivity in adipose tissue. Consequently, we propose L-PGDS appears to function as a potential member of the adipokine secretome involved in the regulation of the obesity-associated metabolic syndrome.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Células 3T3-L1 , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Oxirredutases Intramoleculares , Lipocalinas/genética , Lipocalinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Diketopyrrolopyrrole (DPP) derivatives have been proposed for both singlet fission and energy upconversion as they meet the energetic requirements and exhibit superior photostability compared to many other chromophores. In this study, both time-resolved electronic and IR spectroscopy have been applied to investigate excited state relaxation processes competing with fission in dimers of DPP derivatives with varying linker structures. A charge-separated (CS) state is shown to be an important intermediate with dynamics that are both solvent and linker dependent. The CS state is found for a subset of the total population of excited molecules and it is proposed that CS state formation requires suitably aligned dimers within a broader distribution of conformations available in solution. No long-lived triplet signatures indicative of singlet fission were detected, with the CS state likely acting as an alternative relaxation pathway for the excitation energy. This study provides insight into the role of molecular conformation in determining excited state relaxation pathways in DPP dimer systems.
RESUMO
Blue light absorbing flavoproteins play important roles in a variety of photobiological processes. Consequently, there have been numerous investigations of their excited state structure and dynamics, in particular by time-resolved vibrational spectroscopy. The isoalloxazine chromophore of the flavoprotein cofactors has been studied in detail by time-resolved Raman, lending it a benchmark status for mode assignments in excited electronic states of large molecules. However, detailed comparisons of calculated and measured spectra have proven challenging, as there are many more modes calculated than are observed, and the role of resonance enhancement is difficult to characterize in excited electronic states. Here we employ a recently developed approach due to Elles and co-workers ( J. Phys. Chem. A 2018, 122, 8308-8319) for the calculation of resonance-enhanced Raman spectra of excited states and apply it to the lowest singlet and triplet excited states of the isoalloxazine chromophore. There is generally good agreement between calculated and observed enhancements, which allows assignment of vibrational bands of the flavoprotein cofactors to be refined. However, some prominently enhanced bands are found to be absent from the calculations, suggesting the need for further development of the theory.
RESUMO
In humans, nonhuman primates, and rodents, the frontal cortices exhibit grey matter thinning and dendritic spine pruning that extends into adolescence. This maturation is believed to support higher cognition but may also confer psychiatric vulnerability during adolescence. Currently, little is known about how specific cell types in the frontal cortex mature or whether puberty plays a role in the maturation of some cell types but not others. Here, we used mice to characterize the spatial topography and adolescent development of cross-corticostriatal (cSTR) neurons that project through the corpus collosum to the dorsomedial striatum. We found that apical spine density on cSTR neurons in the medial prefrontal cortex decreased significantly between late juvenile (P29) and young adult time points (P60), with females exhibiting higher spine density than males at both ages. Adult males castrated prior to puberty onset had higher spine density compared to sham controls. Adult females ovariectomized before puberty onset showed greater variance in spine density measures on cSTR cells compared to controls, but their mean spine density did not significantly differ from sham controls. Our findings reveal that these cSTR neurons, a subtype of the broader class of intratelencephalic-type neurons, exhibit significant sex differences and suggest that spine pruning on cSTR neurons is regulated by puberty in male mice.
Assuntos
Corpo Estriado/citologia , Espinhas Dendríticas/ultraestrutura , Plasticidade Neuronal/fisiologia , Neurônios/ultraestrutura , Córtex Pré-Frontal/citologia , Maturidade Sexual , Animais , Corpo Estriado/fisiologia , Espinhas Dendríticas/fisiologia , Feminino , Lobo Frontal , Masculino , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Neurônios/fisiologia , Orquiectomia , Ovariectomia , Técnicas de Patch-Clamp , Córtex Pré-Frontal/fisiologia , Fatores SexuaisRESUMO
OBJECTIVES: To evaluate the potential of the automated titre score (TS) as an alternative method to continuous flow analysis (CFA) for the prediction of the nature of anti-D in pregnancy. BACKGROUND: The 2016 revised British Society for Haematology (BSH) antenatal guidelines recommended a measurement of anti-D concentration by CFA to ensure the detection of potential immune anti-D. Due to high referral costs and resource pressures, uptake has been challenging for hospital laboratories. Serious Hazards of transfusion (SHOT) data have previously shown that this has contributed to missed antenatal follow ups for women with immune anti-D and neonates affected by haemolytic disease of the fetus/newborn. METHODS/MATERIALS: In this multicentre comparative study, samples referred for CFA quantification were also tested by an ORTHO VISION automated anti-D indirect antiglobulin test (IAT) serial dilution and then converted to TS. CFA results and history of anti-D prophylaxis were used to categorise samples as passive or immune, with the aim of determining a potential TS cut-off for CFA referral of at risk patients. RESULTS: Five UK National Health Service (NHS) trusts generated a total of 196 anti-D TS results, of which 128 were classified as passive and 68 as immune. Diagnostic testing of CFA and TS values indicated a TS cut-off of 35 to assist in distinguishing the nature of anti-D. Using this cut-off, 175 (89%) results were correctly assigned into the passive or immune range, giving a specificity of 92.19% and a negative predictive value of 91.47%. CONCLUSION: TS in conjunction with clinical and anti-D prophylaxis history can be used as a viable and cost-effective alternative to CFA in a hospital laboratory setting.