Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 27(11): 3081-98, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26518212

RESUMO

In monocots and eudicots, B class function specifies second and third whorl floral organ identity as described in the classic ABCE model. Grass B class APETALA3/DEFICIENS orthologs have been functionally characterized; here, we describe the positional cloning and characterization of a maize (Zea mays) PISTILLATA/GLOBOSA ortholog Zea mays mads16 (Zmm16)/sterile tassel silky ear1 (sts1). We show that, similar to many eudicots, all the maize B class proteins bind DNA as obligate heterodimers and positively regulate their own expression. However, sts1 mutants have novel phenotypes that provide insight into two derived aspects of maize flower development: carpel abortion and floral asymmetry. Specifically, we show that carpel abortion acts downstream of organ identity and requires the growth-promoting factor grassy tillers1 and that the maize B class genes are expressed asymmetrically, likely in response to zygomorphy of grass floral primordia. Further investigation reveals that floral phyllotactic patterning is also zygomorphic, suggesting significant mechanistic differences with the well-characterized models of floral polarity. These unexpected results show that despite extensive study of B class gene functions in diverse flowering plants, novel insights can be gained from careful investigation of homeotic mutants outside the core eudicot model species.


Assuntos
Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Clonagem Molecular , DNA de Plantas/metabolismo , Flores/ultraestrutura , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Genes de Plantas , Mutação/genética , Fenótipo , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Ligação Proteica , Multimerização Proteica , Transporte Proteico , Interferência de RNA , Homologia de Sequência de Aminoácidos , Zea mays/genética , Zea mays/ultraestrutura
2.
Proc Natl Acad Sci U S A ; 108(33): E506-12, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21808030

RESUMO

The shape of a plant is largely determined by regulation of lateral branching. Branching architecture can vary widely in response to both genotype and environment, suggesting regulation by a complex interaction of autonomous genetic factors and external signals. Tillers, branches initiated at the base of grass plants, are suppressed in response to shade conditions. This suppression of tiller and lateral branch growth is an important trait selected by early agriculturalists during maize domestication and crop improvement. To understand how plants integrate external environmental cues with endogenous signals to control their architecture, we have begun a functional characterization of the maize mutant grassy tillers1 (gt1). We isolated the gt1 gene using positional cloning and found that it encodes a class I homeodomain leucine zipper gene that promotes lateral bud dormancy and suppresses elongation of lateral ear branches. The gt1 expression is induced by shading and is dependent on the activity of teosinte branched1 (tb1), a major domestication locus controlling tillering and lateral branching. Interestingly, like tb1, gt1 maps to a quantitative trait locus that regulates tillering and lateral branching in maize and shows evidence of selection during maize domestication. Branching and shade avoidance are both of critical agronomic importance, but little is known about how these processes are integrated. Our results indicate that gt1 mediates the reduced branching associated with the shade avoidance response in the grasses. Furthermore, selection at the gt1 locus suggests that it was involved in improving plant architecture during the domestication of maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Poaceae/fisiologia , Luz Solar , Genes de Plantas , Dados de Sequência Molecular , Proteínas de Plantas/genética , Zea mays/genética , Zea mays/fisiologia
3.
Plant Cell ; 22(3): 565-78, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20305121

RESUMO

Suppression of inflorescence leaf, or bract, growth has evolved multiple times in diverse angiosperm lineages, including the Poaceae and Brassicaceae. Studies of Arabidopsis thaliana mutants have revealed several genes involved in bract suppression, but it is not known if these genes play a similar role in other plants with suppressed bracts. We identified maize (Zea mays) tassel sheath (tsh) mutants, characterized by the loss of bract suppression, that comprise five loci (tsh1-tsh5). We used map-based cloning to identify Tsh1 and found that it encodes a GATA zinc-finger protein, a close homolog of HANABA TARANU (HAN) of Arabidopsis. The bract suppression function of Tsh1 is conserved throughout the grass family, as we demonstrate that the rice (Oryza sativa) NECK LEAF1 (NL1) and barley (Hordeum vulgare) THIRD OUTER GLUME (TRD) genes are orthologous with Tsh1. Interestingly, NL1/Tsh1/TRD expression and function are not conserved with HAN. The existence of paralogous NL1/Tsh1/TRD-like genes in the grasses indicates that the NL1/Tsh1/TRD lineage was created by recent duplications that may have facilitated its neofunctionalization. A comparison with the Arabidopsis genes regulating bract suppression further supports the hypothesis that the convergent evolution of bract suppression in the Poaceae involved recruitment of a distinct genetic pathway.


Assuntos
Evolução Molecular , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Zea mays/genética , Sequência de Aminoácidos , Arabidopsis/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hordeum/genética , Modelos Genéticos , Dados de Sequência Molecular , Oryza/genética , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Zea mays/crescimento & desenvolvimento
4.
Plant Cell ; 21(9): 2578-90, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19749152

RESUMO

Although many genes that regulate floral development have been identified in Arabidopsis thaliana, relatively few are known in the grasses. In normal maize (Zea mays), each spikelet produces an upper and lower floral meristem, which initiate floral organs in a defined phyllotaxy before being consumed in the production of an ovule. The bearded-ear (bde) mutation affects floral development differently in the upper and lower meristem. The upper floral meristem initiates extra floral organs that are often mosaic or fused, while the lower floral meristem initiates additional floral meristems. We cloned bde by positional cloning and found that it encodes zea agamous3 (zag3), a MADS box transcription factor in the conserved AGAMOUS-LIKE6 clade. Mutants in the maize homolog of AGAMOUS, zag1, have a subset of bde floral defects. bde zag1 double mutants have a severe ear phenotype, not observed in either single mutant, in which floral meristems are converted to branch-like meristems, indicating that bde and zag1 redundantly promote floral meristem identity. In addition, BDE and ZAG1 physically interact. We propose a model in which BDE functions in at least three distinct complexes to regulate floral development in the maize ear.


Assuntos
Flores/crescimento & desenvolvimento , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/genética , Clonagem Molecular , Flores/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Mutação , Proteínas de Plantas/genética , Mapeamento de Interação de Proteínas , RNA de Plantas/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
5.
J Econ Entomol ; 105(3): 783-91, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22812113

RESUMO

Potato virus Y (PVY), a Potyvirus, is transmitted by aphids in a nonpersistent manner. PVY severely affects potato production worldwide. Single and mixed infections of PVY strains, namely PVY(O), PVY(NTN), and PVY(N:O) are a common occurrence in potato systems. However, information available on the ability of aphids to simultaneously transmit multiple PVY strains, specificity associated with simultaneous transmission, and factors affecting specificity are limited. Aphid-mediated transmission experiments were conducted to test the ability of individual aphids to transmit multiple strains using a PVY indicator host. Preliminary results revealed that aphids can transmit at least two viral strains simultaneously. Subsequently, aphid-mediated transmission of three dual-strain combinations was tested using potato plants. Individual aphids transmitted two viral strains simultaneously for all three dual-strain combinations. In all aphid-mediated dual-strain infections involving PVY(NTN), the rate of PVY(NTN) infection was greater than the infection rates of the second strain and dual-strain combinations, indicating specificity associated with transmission of PVY strains. Results of aphid-mediated transmission experiments were compared with results obtained through mechanical transmission. In general, PVY infection rates from aphid-mediated transmission were lower than the rates obtained through mechanical transmission. Unlike aphid-mediated transmission, component strains in dual-strain inoculations were not eliminated during mechanical transmission. These results suggest that there may also be interference associated with aphid-mediated transmission of closely related PVY strains. Perhaps, the observed specificity and/or interference may explain the increase in the incidence of PVY(NTN) and other necrotic strains in recent years.


Assuntos
Afídeos/virologia , Interações Hospedeiro-Parasita , Potyvirus/fisiologia , Solanum tuberosum/virologia , Animais , Doenças das Plantas , Reação em Cadeia da Polimerase , Solanum tuberosum/parasitologia , Especificidade da Espécie
6.
Proc Natl Acad Sci U S A ; 105(39): 15196-201, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18799737

RESUMO

The plant growth hormone auxin plays a critical role in the initiation of lateral organs and meristems. Here, we identify and characterize a mutant, sparse inflorescence1 (spi1), which has defects in the initiation of axillary meristems and lateral organs during vegetative and inflorescence development in maize. Positional cloning shows that spi1 encodes a flavin monooxygenase similar to the YUCCA (YUC) genes of Arabidopsis, which are involved in local auxin biosynthesis in various plant tissues. In Arabidopsis, loss of function of single members of the YUC family has no obvious effect, but in maize the mutation of a single yuc locus causes severe developmental defects. Phylogenetic analysis of the different members of the YUC family in moss, monocot, and eudicot species shows that there have been independent expansions of the family in monocots and eudicots. spi1 belongs to a monocot-specific clade, within which the role of individual YUC genes has diversified. These observations, together with expression and functional data, suggest that spi1 has evolved a dominant role in auxin biosynthesis that is essential for normal maize inflorescence development. Analysis of the interaction between spi1 and genes regulating auxin transport indicate that auxin transport and biosynthesis function synergistically to regulate the formation of axillary meristems and lateral organs in maize.


Assuntos
Genes de Plantas , Ácidos Indolacéticos/metabolismo , Oxigenases/fisiologia , Zea mays/crescimento & desenvolvimento , Sequência de Aminoácidos , Dados de Sequência Molecular , Mutação , Oxigenases/classificação , Oxigenases/genética , Filogenia , Reprodução/genética , Zea mays/enzimologia , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA