Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38370639

RESUMO

The exploration of genotypic variants impacting phenotypes is a cornerstone in genetics research. The emergence of vast collections containing deeply genotyped and phenotyped families has made it possible to pursue the search for variants associated with complex diseases. However, managing these large-scale datasets requires specialized computational tools tailored to organize and analyze the extensive data. GPF (Genotypes and Phenotypes in Families) is an open-source platform ( https://github.com/iossifovlab/gpf ) that manages genotypes and phenotypes derived from collections of families. The GPF interface allows interactive exploration of genetic variants, enrichment analysis for de novo mutations, and phenotype/genotype association tools. In addition, GPF allows researchers to share their data securely with the broader scientific community. GPF is used to disseminate two large-scale family collection datasets (SSC, SPARK) for the study of autism funded by the SFARI foundation. However, GPF is versatile and can manage genotypic data from other small or large family collections. Our GPF-SFARI GPF instance ( https://gpf.sfari.org/ ) provides protected access to comprehensive genotypic and phenotypic data for the SSC and SPARK. In addition, GPF-SFARI provides public access to an extensive collection of de novo mutations identified in individuals with autism and related disorders and to gene-level statistics of the protected datasets characterizing the genes' roles in autism. Here, we highlight the primary features of GPF within the context of GPF-SFARI.

2.
PLoS One ; 14(7): e0220345, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31348809

RESUMO

BACKGROUND: Two manufacturers, Maxim Biomedical and Sedia Biosciences Corporation, supply CDC-approved versions of the HIV-1 Limiting Antigen Avidity EIA (LAg) for detecting 'recent' HIV infection in cross-sectional incidence estimation. This study assesses and compares the performance of the two assays for incidence surveillance. METHODS: We ran both assays on a panel of 2,500 well-characterized HIV-1-infected specimens. We analysed concordance of assay results, assessed reproducibility using repeat testing and estimated mean durations of recent infection (MDRIs) and false-recent rates (FRRs) for a range of normalized optical density (ODn) thresholds, alone and in combination with viral load thresholds. We defined three hypothetical surveillance scenarios, similar to the Kenyan and South African epidemics, and a concentrated epidemic. These scenarios allowed us to evaluate the precision of incidence estimates obtained by means of various recent infection testing algorithms (RITAs) based on each of the two assays. RESULTS: The Maxim assay produced lower ODn values than the Sedia assay on average, largely as a result of higher calibrator readings (mean OD of 0.749 vs. 0.643), with correlation of normalized readings lower (R2 = 0.908 vs. R2 = 0.938). Reproducibility on blinded control specimens was slightly better for Maxim. The MDRI of a Maxim-based algorithm at the 'standard' threshold (ODn ≤1.5 & VL >1,000) was 201 days (95% CI: 180,223) and for Sedia 171 (152,191). The difference Differences in MDRI were estimated at 32.7 (22.9,42.8) and 30.9 days (21.7,40.7) for the two algorithms, respectively. Commensurately, the Maxim algorithm had a higher FRR in treatment-naive subjects (1.7% vs. 1.1%). The two assays produced similar precision of incidence estimates in the three surveillance scenarios. CONCLUSIONS: Differences between the assays can be primarily attributed to the calibrators supplied by the manufacturers. Performance for surveillance was extremely similar, although different thresholds were optimal (i.e. produced the lowest variance of incidence estimates) and at any given ODn threshold, different estimates of MDRI and FRR were obtained. The two assays cannot be treated as interchangeable: assay and algorithm-specific performance characteristic estimates must be used for survey planning and incidence estimation.


Assuntos
Epidemias , Antígenos HIV/fisiologia , Infecções por HIV/epidemiologia , HIV-1/imunologia , Algoritmos , Estudos Transversais , Feminino , Antígenos HIV/imunologia , Infecções por HIV/imunologia , Humanos , Incidência , Quênia , Vigilância da População , Carga Viral
3.
J Acquir Immune Defic Syndr ; 76(5): 547-555, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914669

RESUMO

BACKGROUND: Custom HIV staging assays, including the Sedia HIV-1 Limiting Antigen (LAg) Avidity EIA and avidity modifications of the Ortho VITROS anti-HIV-1+2 and Abbott ARCHITECT HIV Ag/Ab Combo assays, are used to identify "recent" infections in clinical settings and for cross-sectional HIV incidence estimation. However, the high dynamic range of chemiluminescent platforms allows differentiating recent and long-standing infection on signal intensity, and this raises the prospect of using unmodified diagnostic assays for infection timing and surveillance applications. METHODS: We tested a panel of 2500 well-characterized specimens with estimable duration of HIV infection with the 3 assays and the unmodified ARCHITECT. Regression models were used to estimate mean durations of recent infection (MDRIs), context-specific false-recent rates (FRRs) and correlation between diagnostic signal intensity and LAg measurements. Hypothetical epidemiological scenarios were constructed to evaluate utility in surveillance applications. RESULTS: Over a range of MDRIs (reflecting recency discrimination thresholds), a diluted ARCHITECT-based RITA produced lower FRRs than the VITROS platform (FRR ≈ 0.5% and 1.5%, respectively at MDRI ≈ 200 days), and the unmodified diagnostic ARCHITECT produces incidence estimates with comparable precision to LAg (relative SE ≈ 17.5% and 15%, respectively at MDRI ≈ 200 days). ARCHITECT S/CO measurements were highly correlated with LAg optical density measurements (r = 0.80), and values below 200 are strongly predictive of LAg recency and duration of infection less than 1 year. CONCLUSIONS: Low quantitative measurements from the unmodified ARCHITECT obviate the need for additional recency testing, and its use is feasible in clinical staging and incidence surveillance applications.


Assuntos
Infecções por HIV/epidemiologia , Imunoensaio/métodos , Vigilância da População , Testes Diagnósticos de Rotina , Anticorpos Anti-HIV/análise , Antígenos HIV/análise , HIV-1/classificação , Humanos , Incidência , Sensibilidade e Especificidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA