Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35328459

RESUMO

Therapeutic antibodies used to treat cancer are effective in patients with advanced-stage disease. For example, antibodies that activate T-lymphocytes improve survival in many cancer subtypes. In addition, antibody-drug conjugates effectively target cytotoxic agents that are specific to cancer. This review discusses radiation-inducible antigens, which are stress-regulated proteins that are over-expressed in cancer. These inducible cell surface proteins become accessible to antibody binding during the cellular response to genotoxic stress. The lead antigens are induced in all histologic subtypes and nearly all advanced-stage cancers, but show little to no expression in normal tissues. Inducible antigens are exploited by using therapeutic antibodies that bind specifically to these stress-regulated proteins. Antibodies that bind to the inducible antigens GRP78 and TIP1 enhance the efficacy of radiotherapy in preclinical cancer models. The conjugation of cytotoxic drugs to the antibodies further improves cancer response. This review focuses on the use of radiotherapy to control the cancer-specific binding of therapeutic antibodies and antibody-drug conjugates.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/radioterapia
2.
Int J Hyperthermia ; 38(1): 498-510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33757406

RESUMO

PURPOSE: To evaluate the targetability of late-stage cervical cancer by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-induced hyperthermia (HT) as an adjuvant to radiation therapy (RT). METHODS: Seventy-nine cervical cancer patients (stage IIIB-IVA) who received RT with lesions visible on positron emission tomography-computed tomography (PET-CT) were retrospectively analyzed for targetability using a commercially-available HT-capable MRgHIFU system. Targetability was assessed for both primary targets and/or any metastatic lymph nodes using both posterior (supine) and anterior (prone) patient setups relative to the transducer. Thirty-four different angles of rotation along subjects' longitudinal axis were analyzed. Targetability was categorized as: (1) Targetable with/without minimal intervention; (2) Not targetable. To determine if any factors could be used for prospective screening of patients, potential associations between demographic/anatomical factors and targetability were analyzed. RESULTS: 72.15% primary tumors and 33.96% metastatic lymph nodes were targetable from at least one angle. 49.37% and 39.24% of primary tumors could be targeted with patient laying in supine and prone positions, respectively. 25°-30° rotation and 0° rotation had the highest rate of the posterior and anterior targetability, respectively. The ventral depth of the tumor and its distance to the coccyx were statistically correlated with the anterior and posterior targetability, respectively. CONCLUSION: Most late-stage cervical cancer primaries were targetable by MRgHIFU HT requiring either no/minimal intervention. A rotation of 0° or 25°-30° relative to the transducer might benefit anterior and posterior targetability, respectively. Certain demographic/anatomic parameters might be useful in screening patients for treatability.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias do Colo do Útero , Feminino , Humanos , Hipertermia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Estudos Retrospectivos , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia
3.
Circulation ; 139(3): 313-321, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30586734

RESUMO

BACKGROUND: Case studies have suggested the efficacy of catheter-free, electrophysiology-guided noninvasive cardiac radioablation for ventricular tachycardia (VT) using stereotactic body radiation therapy, although prospective data are lacking. METHODS: We conducted a prospective phase I/II trial of noninvasive cardiac radioablation in adults with treatment-refractory episodes of VT or cardiomyopathy related to premature ventricular contractions (PVCs). Arrhythmogenic scar regions were targeted by combining noninvasive anatomic and electric cardiac imaging with a standard stereotactic body radiation therapy workflow followed by delivery of a single fraction of 25 Gy to the target. The primary safety end point was treatment-related serious adverse events in the first 90 days. The primary efficacy end point was any reduction in VT episodes (tracked by indwelling implantable cardioverter defibrillators) or any reduction in PVC burden (as measured by a 24-hour Holter monitor) comparing the 6 months before and after treatment (with a 6-week blanking window after treatment). Health-related quality of life was assessed using the Short Form-36 questionnaire. RESULTS: Nineteen patients were enrolled (17 for VT, 2 for PVC cardiomyopathy). Median noninvasive ablation time was 15.3 minutes (range, 5.4-32.3). In the first 90 days, 2/19 patients (10.5%) developed a treatment-related serious adverse event. The median number of VT episodes was reduced from 119 (range, 4-292) to 3 (range, 0-31; P<0.001). Reduction was observed for both implantable cardioverter defibrillator shocks and antitachycardia pacing. VT episodes or PVC burden were reduced in 17/18 evaluable patients (94%). The frequency of VT episodes or PVC burden was reduced by 75% in 89% of patients. Overall survival was 89% at 6 months and 72% at 12 months. Use of dual antiarrhythmic medications decreased from 59% to 12% ( P=0.008). Quality of life improved in 5 of 9 Short Form-36 domains at 6 months. CONCLUSIONS: Noninvasive electrophysiology-guided cardiac radioablation is associated with markedly reduced ventricular arrhythmia burden with modest short-term risks, reduction in antiarrhythmic drug use, and improvement in quality of life. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov/ . Unique identifier: NCT02919618.


Assuntos
Potenciais de Ação , Técnicas Eletrofisiológicas Cardíacas , Ventrículos do Coração/efeitos da radiação , Ablação por Radiofrequência/métodos , Radiocirurgia/métodos , Taquicardia Ventricular/radioterapia , Complexos Ventriculares Prematuros/radioterapia , Idoso , Idoso de 80 Anos ou mais , Antiarrítmicos/uso terapêutico , Feminino , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Missouri , Valor Preditivo dos Testes , Estudos Prospectivos , Qualidade de Vida , Ablação por Radiofrequência/efeitos adversos , Radiocirurgia/efeitos adversos , Recidiva , Fatores de Risco , Inquéritos e Questionários , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Complexos Ventriculares Prematuros/diagnóstico , Complexos Ventriculares Prematuros/fisiopatologia
4.
Br J Cancer ; 123(6): 869-870, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32555364

RESUMO

Concurrent chemo-radiotherapy is a commonly employed curative treatment approach for locally advanced cancers but is associated with considerable morbidity. Chemo-radiotherapy using proton therapy may be able to reduce side effects of treatment and improve efficacy, but this remains an area of controversy and data are relatively limited. We comment on recently published studies and discuss future directions for proton therapy.


Assuntos
Quimiorradioterapia/métodos , Neoplasias/terapia , Terapia com Prótons/métodos , Quimiorradioterapia/efeitos adversos , Humanos , Terapia com Prótons/efeitos adversos
5.
Int J Hyperthermia ; 37(1): 1159-1173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33003967

RESUMO

PURPOSE: To characterize temperature fields and tissue damage profiles of large-volume hyperthermia (HT) induced by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) in deep and superficial targets in vivo in a porcine model. METHODS: Nineteen HT sessions were performed in vivo with a commercial MRgHIFU system (Sonalleve® V2, Profound Medical Inc., Mississauga, ON, Canada) in hind leg muscles of eight pigs with temperature fields of cross-sectional diameter of 58-mm. Temperature statistics evaluated in the target region-of-interest (tROI) included accuracy, temporal variation, and uniformity. The impact of the number and location of imaging planes for feedback-based temperature control were investigated. Temperature fields were characterized by time-in-range (TIR, the duration each voxel stays within 40-45 °C) maps. Tissue damage was characterized by contrast-enhanced MRI, and macroscopic and histopathological analysis. The performance of the Sonalleve® system was benchmarked against a commercial phantom. RESULTS: Across all HT sessions, the mean difference between the average temperature (Tavg) and the desired temperature was -0.4 ± 0.5 °C; the standard deviation of temperature 1.2 ± 0.2 °C; the temporal variation of Tavg for 30-min HT was 0.6 ± 0.2 °C, and the temperature uniformity was 1.5 ± 0.2 °C. A difference of 2.2-cm (in pig) and 1.5-cm (in phantom) in TIR dimensions was observed when applying feedback-based plane(s) at different locations. Histopathology showed 62.5% of examined HT sessions presenting myofiber degeneration/necrosis within the target volume. CONCLUSION: Large-volume MRgHIFU-mediated HT was successfully implemented and characterized in a porcine model in deep and superficial targets in vivo with heating distributions modifiable by user-definable parameters.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Hipertermia , Animais , Estudos Transversais , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Suínos
6.
Int J Hyperthermia ; 36(1): 1147-1159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31752562

RESUMO

Purpose: To evaluate the feasibility and assess safety parameters of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated hyperthermia (HT; heating to 40-45 °C) in various pelvic targets in a porcine model in vivo.Methods: Thirteen HT treatments were performed in six pigs with a commercial MRgHIFU system (Sonalleve V2, Profound Medical Inc., Mississauga, Canada) to muscle adjacent to the ventral/dorsal bladder wall and uterus to administer 42 °C (±1°) for 30 min (±5%) using an 18-mm target diameter and 100 W power. Feasibility was assessed using accuracy, uniformity, and MR-thermometry performance-based metrics. Safety parameters were assessed for tissues in the targets and beam-path by contrast-enhanced MRI, gross-pathology and histopathology.Results: Across all HT sessions, the mean difference between average temperature (Tavg) and the target temperature within the target region-of-interest (tROI, the cross-section of the heated volume at focal depth) was 0.51 ± 0.33 °C. Within the tROI, the temperature standard deviation averaged 1.55 ± 0.31 °C, the average 30-min Tavg variation was 0.80 ± 0.17 °C, and the maximum difference between Tavg and the 10th- or 90th-percentile temperature averaged 2.01 ± 0.44 °C. The average time to reach ≥41 °C and cool to ≤40 °C within the tROI at the beginning and end of treatment was 47.25 ± 27.47 s and 66.37 ± 62.68 s, respectively. Compared to unheated controls, no abnormally-perfused tissue or permanent damage was evident in the MR images, gross pathology or histological analysis.Conclusions: MRgHIFU-mediated HT is feasible and safety assessment is satisfactory for treating an array of clinically-mimicking pelvic geometries in a porcine model in vivo, implying the technique may have utility in treating pelvic targets in human patients.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Pelve/patologia , Animais , Estudos de Viabilidade , Febre , Humanos , Suínos
7.
Proc Natl Acad Sci U S A ; 113(51): E8247-E8256, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27930300

RESUMO

Accumulating evidence suggests cancer cells exhibit a dependency on metabolic pathways regulated by nicotinamide adenine dinucleotide (NAD+). Nevertheless, how the regulation of this metabolic cofactor interfaces with signal transduction networks remains poorly understood in glioblastoma. Here, we report nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting step in NAD+ synthesis, is highly expressed in glioblastoma tumors and patient-derived glioblastoma stem-like cells (GSCs). High NAMPT expression in tumors correlates with decreased patient survival. Pharmacological and genetic inhibition of NAMPT decreased NAD+ levels and GSC self-renewal capacity, and NAMPT knockdown inhibited the in vivo tumorigenicity of GSCs. Regulatory network analysis of RNA sequencing data using GSCs treated with NAMPT inhibitor identified transcription factor E2F2 as the center of a transcriptional hub in the NAD+-dependent network. Accordingly, we demonstrate E2F2 is required for GSC self-renewal. Downstream, E2F2 drives the transcription of members of the inhibitor of differentiation (ID) helix-loop-helix gene family. Finally, we find NAMPT mediates GSC radiation resistance. The identification of a NAMPT-E2F2-ID axis establishes a link between NAD+ metabolism and a self-renewal transcriptional program in glioblastoma, with therapeutic implications for this formidable cancer.


Assuntos
Neoplasias Encefálicas/metabolismo , Citocinas/genética , Glioblastoma/metabolismo , NAD/biossíntese , Nicotinamida Fosforribosiltransferase/genética , Tolerância a Radiação , Transcrição Gênica , Animais , Antineoplásicos/farmacologia , Encéfalo/patologia , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/radioterapia , Humanos , Camundongos , Mutação , Transplante de Neoplasias , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia
8.
Int J Hyperthermia ; 34(8): 1381-1389, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29301453

RESUMO

PURPOSE: Since mild hyperthermia therapy (MHT) requires maintaining the temperature within a narrow window (e.g. 40-43 °C) for an extended duration (up to 1 h), accurate and precise temperature measurements are essential for ensuring safe and effective treatment. This study evaluated the precision and accuracy of MR thermometry in healthy volunteers at different anatomical sites for long scan times. METHODS: A proton resonance frequency shift method was used for MR thermometry. Eight volunteers were subjected to a 5-min scanning protocol, targeting chest wall, bladder wall, and leg muscles. Six volunteers were subjected to a 30-min scanning protocol and three volunteers were subjected to a 60-min scanning protocol, both targeting the leg muscles. The precision and accuracy of the MR thermometry were quantified. Both the mean precision and accuracy <1 °C were used as criteria for acceptable thermometry. RESULTS: Drift-corrected MR thermometry measurements based on 5-min scans of the chest wall, bladder wall, and leg muscles had accuracies of 1.41 ± 0.65, 1.86 ± 1.20, and 0.34 ± 0.44 °C, and precisions of 2.30 ± 1.21, 1.64 ± 0.56, and 0.48 ± 0.05 °C, respectively. Measurements based on 30-min scans of the leg muscles had accuracy and precision of 0.56 ± 0.05 °C and 0.42 ± 0.50 °C, respectively, while the 60-min scans had accuracy and precision of 0.49 ± 0.03 °C and 0.56 ± 0.05 °C, respectively. CONCLUSIONS: Respiration, cardiac, and digestive-related motion pose challenges to MR thermometry of the chest wall and bladder wall. The leg muscles had satisfactory temperature accuracy and precision per the chosen criteria. These results indicate that extremity locations may be preferable targets for MR-guided MHT using the existing MR thermometry technique.


Assuntos
Hipertermia Induzida , Imageamento por Ressonância Magnética , Músculo Esquelético , Termometria/métodos , Parede Torácica , Bexiga Urinária , Adulto , Feminino , Voluntários Saudáveis , Humanos , Perna (Membro) , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Clin Cancer Res ; 30(7): 1293-1306, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38277241

RESUMO

PURPOSE: Tax-interacting protein 1 (TIP1) is a cancer-specific radiation-inducible cell surface antigen that plays a role in cancer progression and resistance to therapy. This study aimed to develop a novel anti-TIP1 human antibody for noninvasive PET imaging in patients with cancer. EXPERIMENTAL DESIGN: A phage-displayed single-chain variable fragment (scFv) library was created from healthy donors' blood. High-affinity anti-TIP1 scFvs were selected from the library and engineered to human IgG1. Purified Abs were characterized by size exclusion chromatography high-performance liquid chromatography (SEC-HPLC), native mass spectrometry (native MS), ELISA, BIAcore, and flow cytometry. The labeling of positron emitter [89Zr]Zr to the lead Ab, L111, was optimized using deferoxamine (DFO) chelator. The stability of [89Zr]Zr-DFO-L111 was assessed in human serum. Small animal PET studies were performed in lung cancer tumor models (A549 and H460). RESULTS: We obtained 95% pure L111 by SEC-HPLC. Native MS confirmed the intact mass and glycosylation pattern of L111. Conjugation of three molar equivalents of DFO led to the optimal DFO-to-L111 ratio of 1.05. Radiochemical purity of 99.9% and specific activity of 0.37 MBq/µg was obtained for [89Zr]Zr-DFO-L111. [89Zr]Zr-DFO-L111 was stable in human serum over 7 days. The immunoreactive fraction in cell surface binding studies was 96%. In PET, preinjection with 4 mg/kg cold L111 before [89Zr]Zr-DFO-L111 (7.4 MBq; 20 µg) significantly (P < 0.01) enhanced the tumor-to-muscle standard uptake values (SUVmax) ratios on day 5 compared with day 2 postinjection. CONCLUSIONS: L111 Ab targets lung cancer cells in vitro and in vivo. [89Zr]Zr-DFO-L111 is a human antibody that will be evaluated in the first in-human study of safety and PET imaging.


Assuntos
Neoplasias Pulmonares , Anticorpos de Cadeia Única , Animais , Humanos , Radioisótopos/química , Zircônio/química , Desferroxamina/química , Tomografia por Emissão de Pósitrons/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Linhagem Celular Tumoral
10.
Biomed Pharmacother ; 166: 115341, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37625322

RESUMO

Non-small-cell lung cancer (NSCLC) and glioblastoma (GB) have poor prognoses. Discovery of new molecular targets is needed to improve therapy. Tax interacting protein 1 (TIP1), which plays a role in cancer progression, is overexpressed and radiation-inducible in NSCLC and GB. We evaluated the effect of an anti-TIP1 antibody alone and in combination with ionizing radiation (XRT) on NSCLC and GB in vitro and in vivo. NSCLC and GB cells were treated with anti-TIP1 antibodies and evaluated for proliferation, colony formation, endocytosis, and cell death. The efficacy of anti-TIP1 antibodies in combination with XRT on tumor growth was measured in mouse models of NSCLC and GB. mRNA sequencing was performed to understand the molecular mechanisms involved in the action of anti-TIP1 antibodies. We found that targeting the functional domain of TIP1 leads to endocytosis of the anti-TIP1 antibody followed by reduced proliferation and increased apoptosis-mediated cell death. Anti-TIP1 antibodies bound specifically (with high affinity) to cancer cells and synergized with XRT to significantly increase cytotoxicity in vitro and reduce tumor growth in mouse models of NSCLC and GB. Importantly, downregulation of cancer survival signaling pathways was found in vitro and in vivo following treatment with anti-TIP1 antibodies. TIP1 is a new therapeutic target for cancer treatment. Antibodies targeting the functional domain of TIP1 exhibited antitumor activity and enhanced the efficacy of radiation both in vitro and in vivo. Anti-TIP1 antibodies interrupt TIP1 function and are effective cancer therapy alone or in combination with XRT in mouse models of human cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Glioblastoma , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Paclitaxel , Modelos Animais de Doenças
11.
Clin Cancer Res ; 27(11): 3224-3233, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074654

RESUMO

PURPOSE: We recently discovered that anti-TIP1 antibody activates endocytosis in cancer cells, which facilitates retention of antibody and dissociation of a conjugated drug. To improve the pharmacokinetics and cancer specificity of radiosensitizing drugs, we utilized antibody-drug conjugates (ADCs) that bind specifically to radiation-inducible antigen, TIP1, on non-small cell lung cancer (NSCLC). This approach exploits the long circulation time of antibodies to deliver a radiosensitizing drug to cancer each day during radiotherapy. EXPERIMENTAL DESIGN: Antibodies to TIP1 were prioritized based on affinity, cancer-specific binding, and internalization. The lead antibody, 7H5, was conjugated with a cytotoxic drug MMAE because of its ability to radiosensitize cancer. Cytotoxicity, colony formation, and tumor growth studies were performed with 7H5-VcMMAE in combination with radiation. RESULTS: 7H5 showed a high affinity to recombinant TIP1 protein and radiation-inducible TIP1 on the cancer cell surface. 7H5 undergoes endocytosis in NSCLC cells in vitro. We obtained an average drug-to-antibody ratio (DAR) of 4.25 for 7H5-VcMMAE. A 70% reduction in viable cells was observed following 7H5-VcMMAE treatment compared with 7H5 alone in both A549 and H1299 cells. 7H5-VcMMAE sensitized NSCLC cells to radiation, thereby significantly decreasing the surviving fraction. The ADC combined with radiation showed a prolonged delay in tumor growth and improved survival in A549 and H1299 tumor models. CONCLUSIONS: Targeting radiation-inducible TIP1 with a radiosensitizing ADC is a promising strategy to enhance the therapeutic efficacy of NSCLC. This novel approach of targeting with ADCs to radiation-inducible antigens will lead to clinical trials in lung cancer patients treated with radiotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Imunoconjugados/uso terapêutico , Neoplasias Pulmonares/radioterapia , Radiossensibilizantes/farmacocinética , Radiossensibilizantes/uso terapêutico , Células A549 , Antineoplásicos/farmacocinética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Terapia Combinada , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunoconjugados/farmacocinética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia
12.
Clin Cancer Res ; 15(5): 1635-44, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19240173

RESUMO

PURPOSE: In vascular endothelial cells, low doses of ionizing radiation trigger the immediate activation of cytosolic phospholipase A2 (cPLA2). This event initiates prosurvival signaling that could be responsible for radioresistance of tumor vasculature. Thus, the development of radiosensitizers targeting these survival pathways may enhance tumor response to radiation therapy. Arachidonyltrifluoromethyl Ketone (AACOCF3), a specific cPLA2 inhibitor, was studied as a potential radiosensitizer. EXPERIMENTAL DESIGN: Vascular endothelial cells (3B11 and MPMEC) and lung tumor cells (LLC and H460) were treated with 1 micromol/L AACOCF3 for 30 minutes prior to irradiation. Treatment response was evaluated by clonogenic survival, activation of extracellular signal-regulated kinase 1/2 (ERK1/2), tubule formation, and migration assays. For in vivo experiments, mice with LLC or H460 tumors in the hind limbs were treated for 5 consecutive days with 10 mg/kg AACOCF3 administered daily 30 minutes prior to irradiation. Treatment response was assessed by tumor growth delay, Power Doppler Sonography, and immunohistochemistry. RESULTS: In cell culture experiments, inhibition of cPLA2 with AACOCF3 prevented radiation-induced activation of ERK1/2 and decreased clonogenic survival of irradiated vascular endothelial cells but not the lung tumor cells. Treatment with AACOCF3 also attenuated tubule formation and migration in irradiated vascular endothelial cells. In both tumor mouse models, treatment with AACOCF3 prior to irradiation significantly suppressed tumor growth and decreased overall tumor blood flow and vascularity. Increased apoptosis in both tumor cells and tumor vascular endothelium was determined as a possible mechanism of the observed effect. CONCLUSION: These findings identify cPLA2 as a novel molecular target for tumor sensitization to radiation therapy through the tumor vasculature.


Assuntos
Carcinoma de Células Grandes/patologia , Endotélio Vascular/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Fosfolipases A2 Citosólicas/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Ácidos Araquidônicos/farmacologia , Velocidade do Fluxo Sanguíneo , Western Blotting , Carcinoma de Células Grandes/irrigação sanguínea , Carcinoma de Células Grandes/enzimologia , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Carcinoma Pulmonar de Lewis/enzimologia , Carcinoma Pulmonar de Lewis/patologia , Movimento Celular/efeitos dos fármacos , Colágeno/metabolismo , Modelos Animais de Doenças , Combinação de Medicamentos , Endotélio Vascular/enzimologia , Endotélio Vascular/efeitos da radiação , Inibidores Enzimáticos/farmacologia , Laminina/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neovascularização Patológica/tratamento farmacológico , Fosfolipases A2 Citosólicas/metabolismo , Fosforilação/efeitos dos fármacos , Proteoglicanas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doses de Radiação , Ensaio Tumoral de Célula-Tronco
13.
J Ultrasound Med ; 29(4): 597-607, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20375378

RESUMO

OBJECTIVE: The purpose of our study was to establish in vivo criteria for monitoring tumor treatment response using 3-dimensional (3D) volumetric gray scale, power Doppler, and contrast-enhanced sonography. METHODS: Twelve mice were implanted with Lewis lung carcinoma cells on their hind limbs and categorized to 4 groups: control, chemotherapy, radiation therapy, and chemoradiation. A high-frequency ultrasound system with a 40-MHz probe was used to image the tumors. Follow-up contrast-enhanced sonography was performed on days 7 and 14 of treatment with two 50-microL boluses of a perflutren microbubble contrast agent injected into the tail vein. The following contrast-enhanced sonographic criteria were quantified: time to peak, peak intensity, alpha (microvessel cross-sectional area), and beta (microbubble velocity). Three-dimensional power Doppler images were also obtained after the acquisition of contrast data. On day 15, the tumors were excised for immunohistochemical analysis with CD31 fluorescent staining. RESULTS: The tumor size and 3D power Doppler vascular index showed no statistically significant correlation with microvascular density in all examined groups. Among all of the analyzed contrast-enhanced sonographic parameters, relative alpha showed the strongest correlation with the histologic microvessel density (Pearson r = 0.93; P < .01) and an independent association with the histologic data in a multiple regression model (beta = .93; R(2) = 0.86; P < .01). CONCLUSIONS: Of the various examined sonographic parameters, alpha has the strongest correlation with histologic microvessel density and may be the parameter of choice for the noninvasive monitoring of tumor angiogenic response in vivo.


Assuntos
Imageamento Tridimensional , Neoplasias Pulmonares/diagnóstico por imagem , Neovascularização Patológica/diagnóstico por imagem , Ultrassonografia Doppler/métodos , Animais , Meios de Contraste , Fluorocarbonos , Membro Posterior , Imuno-Histoquímica , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
14.
Oncotarget ; 11(27): 2647-2659, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32676166

RESUMO

Resistance to radiation therapy is a significant problem in the treatment of non-small cell lung cancer (NSCLC). There is an unmet need to discover new molecular targets for drug development in combination with standard of care cancer therapy. We found that TAF15 was radiation-inducible using phage-displayed peptide libraries. In this study, we report that overexpression of TAF15 is correlated with worsened survival in NSCLC patients. Radiation treatment led to surface induction of TAF15 in vitro and in vivo. We genetically silenced TAF15 which led to a significant reduction in proliferation of NSCLC cells. Cells depleted of TAF15 exhibited cell cycle arrest and enhanced apoptosis through activation and accumulation of p53. In combination with radiation, TAF15 knockdown led to a significant reduction in the surviving fraction of NSCLC cell lines. To determine the importance of TAF15 surface expression, we targeted TAF15 with an antibody. In combination with radiation, the anti-TAF15 antibody led to a reduction in the surviving fraction of cancer cells. These studies show that TAF15 is a radiation-inducible molecular target that is accessible to anti-cancer antibodies and enhances cell viability in response to radiation.

15.
Oncotarget ; 11(19): 1681-1690, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32477458

RESUMO

The immune system plays a vital role in cancer therapy, especially with the advent of immunotherapy. Radiation therapy induces iatrogenic immunosuppression referred to as radiation-induced lymphopenia (RIL). RIL correlates with significant decreases in the overall survival of cancer patients. Although the etiology and severity of lymphopenia are known, the mechanism(s) of RIL are largely unknown. We found that irradiation not only had direct effects on circulating lymphocytes but also had indirect effects on the spleen, thymus, and bone marrow. We found that irradiated cells traffic to the bone marrow and bring about the reduction of hematopoietic stem cells (HSC) and progenitor cells. Using mass cytometry analysis (CyTOF) of the bone marrow, we found reduced expression of CD11a, which is required for T cell proliferation and maturation. RNA Sequencing and gene set enrichment analysis of the bone marrow cells following irradiation showed down-regulation of genes involved in hematopoiesis. Identification of CD11a and hematopoietic genes involved in iatrogenic immune suppression can help identify mechanisms of RIL.

16.
Nat Commun ; 11(1): 6037, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247158

RESUMO

Drug resistance and dose-limiting toxicities are significant barriers for treatment of multiple myeloma (MM). Bone marrow microenvironment (BMME) plays a major role in drug resistance in MM. Drug delivery with targeted nanoparticles have been shown to improve specificity and efficacy and reduce toxicity. We aim to improve treatments for MM by (1) using nanoparticle delivery to enhance efficacy and reduce toxicity; (2) targeting the tumor-associated endothelium for specific delivery of the cargo to the tumor area, and (3) synchronizing the delivery of chemotherapy (bortezomib; BTZ) and BMME-disrupting agents (ROCK inhibitor) to overcome BMME-induced drug resistance. We find that targeting the BMME with P-selectin glycoprotein ligand-1 (PSGL-1)-targeted BTZ and ROCK inhibitor-loaded liposomes is more effective than free drugs, non-targeted liposomes, and single-agent controls and reduces severe BTZ-associated side effects. These results support the use of PSGL-1-targeted multi-drug and even non-targeted liposomal BTZ formulations for the enhancement of patient outcome in MM.


Assuntos
Bortezomib/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Nanopartículas/química , Inibidores de Proteínas Quinases/uso terapêutico , Microambiente Tumoral , Quinases Associadas a rho/antagonistas & inibidores , Amidas/farmacologia , Amidas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Bortezomib/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Lipossomos , Glicoproteínas de Membrana/metabolismo , Camundongos , Selectina-P/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Piridinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral , Microambiente Tumoral/efeitos dos fármacos , Quinases Associadas a rho/metabolismo , Quinases da Família src/metabolismo
17.
Methods Mol Biol ; 542: 285-300, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19565908

RESUMO

This chapter illustrates our protocol for in vivo biopanning using T7 bacteriophage libraries for the purpose of selecting recombinant peptides for the tumor-specific delivery of radiosensitizers to radiation-inducible antigens within tumor neovasculature. Our goal is to discover peptides binding within tumor vascular endothelium of irradiated tumors. We have previously demonstrated that tumor irradiation increases the spectrum of antigenic targets for drug delivery. To identify candidate peptides with the ability to bind radiation-induced antigens, we inject the phage peptide library intravenously into mice bearing irradiated GL261 and Lewis lung carcinoma (LLC) hind limb tumors. Phage are recovered from excised tumors, amplified, and readministered to mouse-bearing tumors for six total rounds. At least 50 bacterial colonies are selected from each of the tumor types, and prioritized. This prioritization is based on their relative concentrations in tumor versus normal tissues, and then assessment of dominant phage present in both tumor types. These phage are amplified, and the gene sequences determined to deduce the recombinant peptide product. Further prioritization is performed by fluorescence labeling of the selected phage, and injection into irradiated and mock-irradiated tumor-bearing mice for evaluation of in vivo targeting of the candidate phage/peptides.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Biologia Molecular/métodos , Radiação , Adenoviridae , Sequência de Aminoácidos , Animais , Bacteriófago T7/genética , Capsídeo/química , Linhagem Celular Tumoral , Clonagem Molecular , Humanos , Lipossomos , Camundongos , Dados de Sequência Molecular , Peptídeos/química , Espectroscopia de Luz Próxima ao Infravermelho
18.
Cancer Res ; 67(10): 4886-93, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17510418

RESUMO

Tumor vascular endothelium is rather resistant to the cytotoxic effects of radiation. The HIV protease inhibitors (HPI) amprenavir, nelfinavir, and saquinavir have previously been shown to sensitize tumor cells to the cytotoxic effects of radiation. Additionally, this class of drug has been shown to inhibit angiogenesis and tumor cell migration. Therefore, in the current study, we wanted to determine whether HPIs could enhance the effect of radiation on endothelial function. Our study shows that HPIs, particularly nelfinavir, significantly enhance radiations effect on human umbilical vein endothelial cells (HUVEC) and tumor vascular endothelium. We show that pretreatment of HUVEC with nelfinavir results in enhanced cytotoxicity, including increased apoptosis, when combined with radiation. Moreover, using several functional assays, we show that combination treatment effectively blocks endothelial cell migration and organization. These findings were accompanied by attenuation of Akt phosphorylation, a known pathway for radioresistance. Last, in vivo analysis of tumor microvasculature destruction showed a more than additive effect for nelfinavir and radiation. This study shows that HPIs can enhance the effect of ionizing radiation on vascular endothelium. Therefore, the Food and Drug Administration-approved drug, nelfinavir, may be an effective radiosensitizer in the clinic.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/efeitos da radiação , Inibidores da Protease de HIV/farmacologia , Nelfinavir/farmacologia , Radiossensibilizantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos da radiação , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Células Cultivadas , Células Endoteliais/citologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
19.
J Control Release ; 298: 194-201, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30763622

RESUMO

Targeted molecular imaging allows specific visualization and monitoring of tumors. Cancer-specific peptides have been developed for imaging and therapy. Peptides that specifically target cancer have several advantages including, ease of synthesis, low antigenicity, and enhanced diffusion into tissues. We developed the HVGGSSV peptide as a molecular targeting/imaging agent. HVGGSSV targets Tax interacting protein 1 (TIP1) which is a 14 kDa PDZ domain-containing protein that is overexpressed in cancer. We docked HVGGSSV in silico using the three-dimensional structure of TIP1 and found the binding energy was -6.0 kCal/mol. The binding affinity of HVGGSSV to TIP1 protein was found to have a KD of 3.3 × 10-6 M using surface plasmon resonance. We conjugated a 40 kDa PEG to HVGGSSV to enhance the circulation and evaluated the tumor binding in nude mice bearing heterotopic cervical (HT3), esophageal (OE33), pancreatic (BXPC3), lung (A549) and glioma (D54) tumors. NanoSPECT/CT imaging of the mice was performed 48 h and 72 h after injecting with 111Indium (111In) labeled PEG-HVGGSSV or PEG-control peptide. SPECT imaging revealed that 111In-PEG-HVGGSSV specifically bound to cervical, esophageal, pancreatic, lung and brain tumors. Post SPECT biodistribution data further validated tumor-specific binding. Overall, HVGGSSV peptide specifically binds to the major groove of the TIP1 protein surface. PEGylated-HVGGSSV could be used to target cancers that overexpress TIP1.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/metabolismo , Peptídeos/administração & dosagem , Polietilenoglicóis/química , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Radioisótopos de Índio , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Imagem Molecular , Neoplasias/patologia , Peptídeos/química , Peptídeos/metabolismo , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
20.
Ultrasound Med Biol ; 45(5): 1025-1043, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30773377

RESUMO

Hyperthermia therapy (HT) raises tissue temperature to 40-45°C for up to 60 min. Hyperthermia is one of the most potent sensitizers of radiation therapy (RT). Ultrasound-mediated HT for radiosensitization has been used clinically since the 1960s. Recently, magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU), which has been approved by the United States Food and Drug Administration for thermal ablation therapy, has been adapted for HT. With emerging clinical trials using MRgHIFU HT for radiosensitization, there is a pressing need to review the ultrasound HT technology. The objective of this review is to overview existing HT technology, summarize available ultrasound HT devices, evaluate clinical studies combining ultrasound HT with RT and discuss challenges and future directions.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Hipertermia Induzida/métodos , Neoplasias/terapia , Tolerância a Radiação , Humanos , Imagem por Ressonância Magnética Intervencionista , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA