Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Environ Manage ; 306: 114409, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032940

RESUMO

After the accident at the Fukushima Daiichi nuclear power plant in Japan, the migration of radioactive cesium (Cs) in soils has become a crucial issue since this can negatively affect human health and the surrounding environment. Dissolved organic matter (DOM) may have different influences on Cs migration in soils depending on Cs adsorption sites with different selectivity. It is unclear how DOM affects the rapid migration of Cs in soils under flowing water conditions during rainfall events. This study evaluated the effects of DOM on Cs migration in weathered granite soil depending on Cs adsorption sites by conducting laboratory experiments under different DOM conditions and Cs concentrations in the liquid phase. Cs concentration can affect the fraction of Cs adsorbed onto differently selective sites, and DOM can have different influences on Cs migration in the soil accordingly. Under condition of high-Cs concentration, the DOM adsorbed on the soil reduced Cs migration due to increasing Cs electrostatic adsorption to less selective sites in the soil. Meanwhile, under low-Cs concentration, the DOM adsorbed on the soil enhanced Cs migration because the DOM on the soil decreased the Cs adsorption to highly selective sites. Furthermore, DOM in the liquid phase detached the Cs adsorbed on the less selective sites and enhanced Cs migration in the soil, regardless of the Cs concentration.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo , Césio/análise , Radioisótopos de Césio/análise , Matéria Orgânica Dissolvida , Humanos , Japão , Dióxido de Silício , Solo , Poluentes Radioativos do Solo/análise , Água
2.
Biosci Biotechnol Biochem ; 85(5): 1165-1169, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33784734

RESUMO

Analyses of metabolite secretions by field-grown plants remain scarce. We analyzed daidzein secretion by field-grown soybean. Daidzein secretion was higher during early vegetative stages than reproductive stages, a trend that was also seen for hydroponically grown soybean. Daidzein secretion was up to 10 000-fold higher under field conditions than hydroponic conditions, leading to a more accurate simulation of rhizosphere daidzein content.


Assuntos
Glycine max/metabolismo , Isoflavonas/biossíntese , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Genisteína/isolamento & purificação , Genisteína/metabolismo , Glucosídeos/biossíntese , Glucosídeos/isolamento & purificação , Hidroponia/métodos , Isoflavonas/isolamento & purificação , Especificidade de Órgãos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Rizosfera , Glycine max/crescimento & desenvolvimento
3.
Plant Cell Environ ; 43(4): 1036-1046, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31875335

RESUMO

Plant roots nurture a wide variety of microbes via exudation of metabolites, shaping the rhizosphere's microbial community. Despite the importance of plant specialized metabolites in the assemblage and function of microbial communities in the rhizosphere, little is known of how far the effects of these metabolites extend through the soil. We employed a fluid model to simulate the spatiotemporal distribution of daidzein, an isoflavone secreted from soybean roots, and validated using soybeans grown in a rhizobox. We then analysed how daidzein affects bacterial communities using soils artificially treated with daidzein. Simulation of daidzein distribution showed that it was only present within a few millimetres of root surfaces. After 14 days in a rhizobox, daidzein was only present within 2 mm of root surfaces. Soils with different concentrations of daidzein showed different community composition, with reduced α-diversity in daidzein-treated soils. Bacterial communities of daidzein-treated soils were closer to those of the soybean rhizosphere than those of bulk soils. This study highlighted the limited distribution of daidzein within a few millimetres of root surfaces and demonstrated a novel role of daidzein in assembling bacterial communities in the rhizosphere by acting as more of a repellant than an attractant.


Assuntos
Glycine max/microbiologia , Isoflavonas/metabolismo , Rizosfera , Microbiologia do Solo , Modelos Biológicos , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Glycine max/metabolismo
4.
J Environ Manage ; 254: 109785, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31733484

RESUMO

It is important to understand the migration of Cesium (Cs) in soils, particularly after the nuclear power plant accident at Fukushima Dai-ichi, Japan. Dissolved organic matter (DOM) is one of factors affecting the migration of Cs in soils under flowing water conditions. We investigated the effect of DOM on the migration of Cs adsorbed to the clay planar site via laboratory column experiments. The sequence of DOM application had a significant influence on Cs transport in the soil. When DOM was applied concurrently with or prior to Cs application, the DOM adsorbed on to the clay planar site adsorbed onto the soil solid surface and enhanced Cs adsorption; consequently, it slowed Cs migration in the soil. In particular, in the case of DOM loaded prior to the application of Cs solution, a noticeable delay in Cs migration was observed. On the other hand, when DOM was applied to the soil where the Cs solution had been previously applied, the DOM desorbed Cs from the soil. DOM in liquid phase enhanced the migration of Cs through the formation of binding to organic matter. Majority of Cs affected by DOM was the exchangeable fraction that adsorbed to the clay planar site. In other words, DOM attached to the soil would adsorb Cs as a easily exchangeable form and depress migration of Cs. On the other hand, DOM in the soil solution may up take adsorbed Cs from the soil and enhanced the transport in the form of Cs bound to DOM.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo , Césio , Radioisótopos de Césio , Japão , Dióxido de Silício , Solo
5.
Langmuir ; 35(21): 6853-6860, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31058507

RESUMO

An understanding of nanobubble (NB) migration in porous media is needed for potential environmental applications. The solution chemistry is well known to be a critical factor in determining interactions of other colloids and nanoparticles with surfaces. However, little quantitative research has examined the influence of solution chemistry on NB transport. One-dimensional column experiments were therefore conducted to investigate the transport, retention, and release of NBs in glass beads under different solution chemistry conditions. NB concentrations in the effluent were reduced with an increase in ionic strength (IS) or a decrease in pH due to a reduction in the repulsive force between the glass surface and NBs, especially when the solution contained Ca2+ as compared to Na+ and for larger NBs. This result was somewhat surprising because electrostatic and van der Waals interactions for NBs were both repulsive on a homogeneous glass bead surface. NB retention on the surface was explained by ubiquitous nanoscale roughness on the glass beads that significantly lowered the energy barrier and localized attractive charge heterogeneity and/or hydrophobic interactions. In contrast to Na+, adsorbed Ca2+ ions produced charge heterogeneity that enhanced NB retention and inhibited release with IS reduction.

6.
Plant Cell Physiol ; 58(9): 1594-1600, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637253

RESUMO

Isoflavones play important roles in rhizosphere plant-microbe interactions. Daidzein and genistein secreted by soybean roots induce the symbiotic interaction with rhizobia and may modulate rhizosphere interactions with microbes. Yet despite their important roles, little is known about the biosynthesis, secretion and fate of isoflavones in field-grown soybeans. Here, we analyzed isoflavone contents and the expression of isoflavone biosynthesis genes in field-grown soybeans. In roots, isoflavone contents and composition did not change with crop growth, but the expression of UGT4, an isoflavone-specific 7-O-glucosyltransferase, and of ICHG (isoflavone conjugates hydrolyzing beta-glucosidase) was decreased during the reproductive stages. Isoflavone contents were higher in rhizosphere soil than in bulk soil during both vegetative and reproductive stages, and were comparable in the rhizosphere soil between these two stages. We analyzed the degradation dynamics of daidzein and its glucosides to develop a model for predicting rhizosphere isoflavone contents from the amount of isoflavones secreted in hydroponic culture. Conjugates of daidzein were degraded much faster than daidzein, with degradation rate constants of 8.51 d-1 for malonyldaidzin and 11.6 d-1 for daidzin, vs. 9.15 × 10-2 d-1 for daidzein. The model suggested that secretion of isoflavones into the rhizosphere is higher during vegetative stages than during reproductive stages in field-grown soybean.


Assuntos
Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Isoflavonas/biossíntese , Isoflavonas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Glucosídeos/metabolismo , Isoflavonas/química , Cinética , Modelos Moleculares , Raízes de Plantas/genética , Rizosfera , Solo , Glycine max/genética
7.
J Contam Hydrol ; 242: 103854, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34293646

RESUMO

Nanobubbles have recently attracted much interest for their practical use and potential applications in environmental issues. The pre-existence of deposited colloidal particles in porous media commonly occurs when nanobubbles applied to porous media interact with deposited colloidal particles. However, the current understanding of the effect of the interactions with pre-deposited colloidal particles on nanobubble transport in saturated porous media remains incomplete, and the effects are often overlooked. Therefore, we performed 1D column experiments with sequential injections of colloidal and nanobubble suspensions to study the effect of pre-deposited materials on the retention and release of colloids and nanobubbles in packed glass beads. In this study, we used resonant mass measurements to measure the number concentrations of colloids and nanobubbles during transport experiments for the first time to distinguish between coexisting solid colloidal particles and nanobubbles with different buoyancies in mixed effluent during transport. The nanobubble retention increased because of the pre-existence of deposited colloidal particles, indicating that the deposited colloidal particles act as additional deposition sites and physical obstacles for nanobubbles through physicochemical (including hydrophobic) interactions. This study also provides a future reference for the applicability of resonant mass measurement to cotransport experiments of different buoyant particles, including colloids, nanobubbles, and oil droplets.


Assuntos
Coloides , Porosidade
8.
Sci Total Environ ; 722: 137783, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32208245

RESUMO

Groundwater is essential for the Earth biosphere but is often contaminated by harmful chemical compounds due to both anthropogenic and natural causes. A key factor controlling the fate of harmful chemicals in groundwater is the reduction/oxidation (redox) conditions. The formation factors for the groundwater redox conditions are insufficiently understood. In this study, long-term groundwater quality beneath one of the world megacities was monitored and evaluated. We measured and compared hydrogeochemical conditions including groundwater quality (35 chemical parameters) and redox conditions of five aquifers in the Arakawa Lowland and Musashino Upland, southern Kanto Plain of the Tokyo Metropolitan area, Japan. Monitoring results suggested the following: The main origin of groundwater is precipitation in both the Lowland and Upland areas. The three aquifers in the Arakawa Lowland are likely fully separated, with one unconfined and two confined aquifers under iron reducing and methanogenic conditions, respectively. Oppositely, in the Musashino Upland, the water masses in the two aquifers are likely partly connected, under aerobic conditions, and undergoing the same groundwater recharge and flow processes under similar hydrogeological conditions. The different groundwater redox conditions observed are likely caused by the very different groundwater residence times for the Arakawa Lowland and Musashino Upland.

9.
J Contam Hydrol ; 208: 61-67, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29269033

RESUMO

An understanding of nano-scale bubble (NB) transport in porous media is important for potential application of NBs in soil/groundwater remediation. It is expected that the solution chemistry of NB water highly influences the surface characteristics of NBs and porous media and the interaction between them, thus affecting the stability and transport characteristics of NB. In this study, in addition to stability experiments, one-dimensional column transport experiments using glass beads were conducted to investigate the effects of pH on the NB transport behavior. The results showed that the NBs were more stable under higher pH. Column transport experiments revealed that entrapment of NBs, especially larger ones, was enhanced in lower-pH water, likely suggesting pH-dependent NB attachment and physical straining, both of which are also probably influenced by bubble size. Although relatively smaller NBs were released after switching the eluting fluid to one with lower ionic strength, most of the NBs in lower-pH water were still retained in the porous media even altering the chemical condition.


Assuntos
Recuperação e Remediação Ambiental/métodos , Nanoestruturas/química , Água Subterrânea , Concentração de Íons de Hidrogênio , Nanoestruturas/análise , Concentração Osmolar , Oxigênio , Porosidade , Solo
10.
Environ Sci Pollut Res Int ; 25(24): 24500-24506, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30009359

RESUMO

Landfill sites are significant sources of methane gas globally. Understanding the temporal variabilities of methane emissions from landfill sites is necessary for estimating such emissions. In this study, an automated monitoring system was used to monitor methane emission flux and concentration on daily and hourly time scales at a landfill site. Measured methane emission fluxes were almost negligible in the studied area. However, methane concentration at landfill surface at nighttime was significantly higher than those in the daytime, which demonstrates the importance of investigating methane emissions at an hourly time scale, including during nighttime. The daily and hourly variations in methane concentration were well correlated with either soil temperature or volumetric water content near the surface. The obtained relations indicate that the automated monitoring system measurements can facilitate a more comprehensive understanding of the methane emission mechanisms at different time scales.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Metano/análise , Instalações de Eliminação de Resíduos , Monitoramento Ambiental/instrumentação , Japão , Eliminação de Resíduos , Solo/química , Fatores de Tempo , Água/análise
11.
Artigo em Inglês | MEDLINE | ID: mdl-28817098

RESUMO

After the Fukushima Daiichi Nuclear Power Plant accident, the vertical distribution of radiocesium in soil has been investigated to better understand the behavior of radiocesium in the environment. The typical method used for measuring the vertical distribution of radiocesium is troublesome because it requires collection and measurement of the activity of soil samples. In this study, we established a method of estimating the vertical distribution of radiocesium by focusing on the characteristics of gamma-ray spectra obtained via aerial radiation monitoring using an unmanned helicopter. The estimates are based on actual measurement data collected at an extended farm. In this method, the change in the ratio of direct gamma rays to scattered gamma rays at various depths in the soil was utilized to quantify the vertical distribution of radiocesium. The results show a positive correlation between the abovementioned and the actual vertical distributions of radiocesium measured in the soil samples. A vertical distribution map was created on the basis of this ratio using a simple equation derived from the abovementioned correlation. This technique can provide a novel approach for effective selection of high-priority areas that require decontamination.


Assuntos
Radioisótopos de Césio/análise , Acidente Nuclear de Fukushima , Exposição à Radiação , Monitoramento de Radiação/métodos , Poluentes Radioativos do Solo/análise , Aeronaves , Raios gama , Japão
12.
Water Res ; 94: 120-127, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26938497

RESUMO

Global warming and urbanization together with development of subsurface infrastructures (e.g. subways, shopping complexes, sewage systems, and Ground Source Heat Pump (GSHP) systems) will likely cause a rapid increase in the temperature of relatively shallow groundwater reservoirs (subsurface thermal pollution). However, potential effects of a subsurface temperature change on groundwater quality due to changed physical, chemical, and microbial processes have received little attention. We therefore investigated changes in 34 groundwater quality parameters during a 13-month enhanced-heating period, followed by 14 months of natural or enhanced cooling in a confined marine aquifer at around 17 m depth on the Saitama University campus, Japan. A full-scale GSHP test facility consisting of a 50 m deep U-tube for circulating the heat-carrying fluid and four monitoring wells at 1, 2, 5, and 10 m from the U-tube were installed, and groundwater quality was monitored every 1-2 weeks. Rapid changes in the groundwater level in the area, especially during the summer, prevented accurate analyses of temperature effects using a single-well time series. Instead, Dual-Well Analysis (DWA) was applied, comparing variations in subsurface temperature and groundwater chemical concentrations between the thermally-disturbed well and a non-affected reference well. Using the 1 m distant well (temperature increase up to 7 °C) and the 10 m distant well (non-temperature-affected), the DWA showed an approximately linear relationships for eight components (B, Si, Li, dissolved organic carbon (DOC), Mg(2+), NH4(+), Na(+), and K(+)) during the combined 27 months of heating and cooling, suggesting changes in concentration between 4% and 31% for a temperature change of 7 °C.


Assuntos
Água Subterrânea/química , Temperatura , Qualidade da Água , Monitoramento Ambiental , Japão , Estações do Ano
13.
Waste Manag ; 31(12): 2464-72, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21813272

RESUMO

Landfill sites are emerging in climate change scenarios as a significant source of greenhouse gases. The compacted final soil cover at landfill sites plays a vital role for the emission, fate and transport of landfill gases. This study investigated the effects of dry bulk density, ρ(b), and particle size fraction on the main soil-gas transport parameters - soil-gas diffusivity (D(p)/D(o), ratio of gas diffusion coefficients in soil and free air) and air permeability (k(a)) - under variably-saturated moisture conditions. Soil samples were prepared by three different compaction methods (Standard and Modified Proctor compaction, and hand compaction) with resulting ρ(b) values ranging from 1.40 to 2.10 g cm(-3). Results showed that D(p) and k(a) values for the '+gravel' fraction (<35 mm) became larger than for the '-gravel' fraction (<2mm) under variably-saturated conditions for a given soil-air content (ε), likely due to enhanced gas diffusion and advection through less tortuous, large-pore networks. The effect of dry bulk density on D(p) and k(a) was most pronounced for the '+gravel' fraction. Normalized ratios were introduced for all soil-gas parameters: (i) for gas diffusivity D(p)/D(f), the ratio of measured D(p) to D(p) in total porosity (f), (ii) for air permeability k(a)/k(a)(,pF4.1), the ratio of measured k(a) to k(a) at 1235 kPa matric potential (=pF 4.1), and (iii) for soil-air content, the ratio of soil-air content (ε) to total porosity (f) (air saturation). Based on the normalized parameters, predictive power-law models for D(p)(ε/f) and k(a)(ε/f) models were developed based on a single parameter (water blockage factor M for D(p) and P for k(a)). The water blockage factors, M and P, were found to be linearly correlated to ρ(b) values, and the effects of dry bulk density on D(p) and k(a) for both '+gravel' and '-gravel' fractions were well accounted for by the new models.


Assuntos
Poluentes Atmosféricos/análise , Efeito Estufa , Modelos Teóricos , Tamanho da Partícula , Eliminação de Resíduos/métodos , Solo/análise , Água Subterrânea/análise
14.
J Hazard Mater ; 166(1): 207-12, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19124192

RESUMO

The understanding of the gaseous adsorption process and the parameters of volatile organic compounds such as organic solvents or fuels onto soils is very important in the analysis of the transport or fate of these chemicals in soils. Batch adsorption experiments with six different treatments were conducted to determine the adsorption of isohexane, a gaseous aliphatic, onto volcanic ash soil (Tachikawa loam). The measured gas adsorption coefficient for samples of Tachikawa loam used in the first three treatments, Control, AD (aggregate destroyed), and AD-OMR (aggregate destroyed and organic matter removed), implied that the aggregate structure of volcanic ash soil as well as organic matter strongly enhanced gas adsorption under the dry condition, whereas under the wet condition, the aggregate structure played an important role in gas adsorption regardless of the insolubility of isohexane. In the gas adsorption experiments for the last three treatments, soils were sieved in different sizes of mesh and were separated into three different aggregate or particle size fractions (2.0-1.0mm, 1.0-0.5mm, and less than 0.5mm). Tachikawa loam with a larger size fraction showed higher gas adsorption coefficient, suggesting the higher contributions of macroaggregates to isohexane gas adsorption under dry and wet conditions.


Assuntos
Poluição do Ar/prevenção & controle , Gases/isolamento & purificação , Hexanos/isolamento & purificação , Compostos Orgânicos/isolamento & purificação , Erupções Vulcânicas , Adsorção , Gases/química , Compostos Orgânicos/química , Tamanho da Partícula , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA