Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Res Sq ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496527

RESUMO

Brain-machine interface performance is largely affected by the neuroinflammatory responses resulting in large part from blood-brain barrier (BBB) damage following intracortical microelectrode implantation. Recent findings strongly suggest that certain gut bacterial constituents penetrate the BBB and are resident in various brain regions of rodents and humans, both in health and disease. Therefore, we hypothesized that damage to the BBB caused by microelectrode implantation could amplify dysregulation of the microbiome-gut-brain axis. Here, we report that bacteria, including those commonly found in the gut, enter the brain following intracortical microelectrode implantation in mice implanted with single-shank silicon microelectrodes. Systemic antibiotic treatment of mice implanted with microelectrodes to suppress bacteria resulted in differential expression of bacteria in the brain tissue and a reduced acute inflammatory response compared to untreated controls, correlating with temporary improvements in microelectrode recording performance. Long-term antibiotic treatment resulted in worsening microelectrode recording performance and dysregulation of neurodegenerative pathways. Fecal microbiome composition was similar between implanted mice and an implanted human, suggesting translational findings. However, a significant portion of invading bacteria was not resident in the brain or gut. Together, the current study established a paradigm-shifting mechanism that may contribute to chronic intracortical microelectrode recording performance and affect overall brain health following intracortical microelectrode implantation.

2.
ACS Appl Mater Interfaces ; 5(18): 9026-33, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23957211

RESUMO

In this paper, the fabrication and growth mechanism of net-shaped micropatterned self-organized thin-film TiO2 nanotube (TFTN) arrays on a silicon substrate are reported. Electrochemical anodization is used to grow the nanotubes from thin-film titanium sputtered on a silicon substrate with an average diameter of ~30 nm and a length of ~1.5 µm using aqueous and organic-based types of electrolytes. The fabrication and growth mechanism of TFTN arrays from micropatterned three-dimensional isolated islands of sputtered titanium on a silicon substrate is demonstrated for the first time using focused-ion-beam (FIB) technique. This work demonstrates the use of the FIB technique as a simple, high-resolution, and maskless method for high-aspect-ratio etching for the creation of isolated islands and shows great promise toward the use of the proposed approach for the development of metal oxide nanostructured devices and their integration with micro- and nanosystems within silicon-based integrated-circuit devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA