Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(16)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764398

RESUMO

Breast cancer is one of the major public health issues and is considered a leading cause of cancer-related deaths among women worldwide. Its early diagnosis can effectively help in increasing the chances of survival rate. To this end, biopsy is usually followed as a gold standard approach in which tissues are collected for microscopic analysis. However, the histopathological analysis of breast cancer is non-trivial, labor-intensive, and may lead to a high degree of disagreement among pathologists. Therefore, an automatic diagnostic system could assist pathologists to improve the effectiveness of diagnostic processes. This paper presents an ensemble deep learning approach for the definite classification of non-carcinoma and carcinoma breast cancer histopathology images using our collected dataset. We trained four different models based on pre-trained VGG16 and VGG19 architectures. Initially, we followed 5-fold cross-validation operations on all the individual models, namely, fully-trained VGG16, fine-tuned VGG16, fully-trained VGG19, and fine-tuned VGG19 models. Then, we followed an ensemble strategy by taking the average of predicted probabilities and found that the ensemble of fine-tuned VGG16 and fine-tuned VGG19 performed competitive classification performance, especially on the carcinoma class. The ensemble of fine-tuned VGG16 and VGG19 models offered sensitivity of 97.73% for carcinoma class and overall accuracy of 95.29%. Also, it offered an F1 score of 95.29%. These experimental results demonstrated that our proposed deep learning approach is effective for the automatic classification of complex-natured histopathology images of breast cancer, more specifically for carcinoma images.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Redes Neurais de Computação
2.
Sci Rep ; 12(1): 15600, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114214

RESUMO

Breast cancer is a common malignancy and a leading cause of cancer-related deaths in women worldwide. Its early diagnosis can significantly reduce the morbidity and mortality rates in women. To this end, histopathological diagnosis is usually followed as the gold standard approach. However, this process is tedious, labor-intensive, and may be subject to inter-reader variability. Accordingly, an automatic diagnostic system can assist to improve the quality of diagnosis. This paper presents a deep learning approach to automatically classify hematoxylin-eosin-stained breast cancer microscopy images into normal tissue, benign lesion, in situ carcinoma, and invasive carcinoma using our collected dataset. Our proposed model exploited six intermediate layers of the Xception (Extreme Inception) network to retrieve robust and abstract features from input images. First, we optimized the proposed model on the original (unnormalized) dataset using 5-fold cross-validation. Then, we investigated its performance on four normalized datasets resulting from Reinhard, Ruifrok, Macenko, and Vahadane stain normalization. For original images, our proposed framework yielded an accuracy of 98% along with a kappa score of 0.969. Also, it achieved an average AUC-ROC score of 0.998 as well as a mean AUC-PR value of 0.995. Specifically, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. For normalized images, the proposed architecture performed better for Makenko normalization compared to the other three techniques. In this case, the proposed model achieved an accuracy of 97.79% together with a kappa score of 0.965. Also, it attained an average AUC-ROC score of 0.997 and a mean AUC-PR value of 0.991. Especially, for in situ carcinoma and invasive carcinoma, it offered sensitivity of 96% and 99%, respectively. These results demonstrate that our proposed model outperformed the baseline AlexNet as well as state-of-the-art VGG16, VGG19, Inception-v3, and Xception models with their default settings. Furthermore, it can be inferred that although stain normalization techniques offered competitive performance, they could not surpass the results of the original dataset.


Assuntos
Neoplasias da Mama , Carcinoma in Situ , Carcinoma , Neoplasias da Mama/patologia , Amarelo de Eosina-(YS) , Feminino , Hematoxilina , Humanos , Redes Neurais de Computação
3.
PLoS One ; 13(1): e0191392, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29351559

RESUMO

Epilepsy is a brain disorder characterised by the recurrent and unpredictable interruptions of normal brain function, called epileptic seizures. The present study attempts to derive new diagnostic indices which may delineate between ictal and interictal states of epilepsy. To achieve this, the nonlinear modeling approach of global principal dynamic modes (PDMs) is adopted to examine the functional connectivity of the temporal and frontal lobes with the occipital brain segment using an ensemble of paediatric EEGs having the presence of epileptic seizure. The distinct spectral characteristics of global PDMs are found to be in line with the neural rhythms of brain dynamics. Moreover, we find that the linear trends of associated nonlinear functions (ANFs) associated with the 2nd and 4th global PDMs (representing delta, theta and alpha bands) of Fp1-F3 may differentiate between ictal and interictal states of epilepsy. These findings suggest that global PDMs and their associated ANFs may offer potential utility as diagnostic neural measures for ictal and interictal states of epilepsy.


Assuntos
Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Criança , Eletroencefalografia/estatística & dados numéricos , Lobo Frontal/fisiopatologia , Humanos , Modelos Neurológicos , Dinâmica não Linear , Convulsões/diagnóstico , Convulsões/fisiopatologia , Análise de Sistemas , Lobo Temporal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA