Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21965, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38058649

RESUMO

Purpose: The rapid spread of the COVID-19 omicron variant virus has resulted in an overload of hospitals around the globe. As a result, many patients are deprived of hospital facilities, increasing mortality rates. Therefore, mortality rates can be reduced by efficiently assigning facilities to higher-risk patients. Therefore, it is crucial to estimate patients' survival probability based on their conditions at the time of admission so that the minimum required facilities can be provided, allowing more opportunities to be available for those who need them. Although radiologic findings in chest computerized tomography scans show various patterns, considering the individual risk factors and other underlying diseases, it is difficult to predict patient prognosis through routine clinical or statistical analysis. Method: In this study, a deep neural network model is proposed for predicting survival based on simple clinical features, blood tests, axial computerized tomography scan images of lungs, and the patients' planned treatment. The model's architecture combines a Convolutional Neural Network and a Long Short Term Memory network. The model was trained using 390 survivors and 108 deceased patients from the Rasoul Akram Hospital and evaluated 109 surviving and 36 deceased patients infected by the omicron variant. Results: The proposed model reached an accuracy of 87.5% on the test data, indicating survival prediction possibility. The accuracy was significantly higher than the accuracy achieved by classical machine learning methods without considering computerized tomography scan images (p-value <= 4E-5). The images were also replaced with hand-crafted features related to the ratio of infected lung lobes used in classical machine-learning models. The highest-performing model reached an accuracy of 84.5%, which was considerably higher than the models trained on mere clinical information (p-value <= 0.006). However, the performance was still significantly less than the deep model (p-value <= 0.016). Conclusion: The proposed deep model achieved a higher accuracy than classical machine learning methods trained on features other than computerized tomography scan images. This proves the images contain extra information. Meanwhile, Artificial Intelligence methods with multimodal inputs can be more reliable and accurate than computerized tomography severity scores.

2.
Commun Biol ; 5(1): 556, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672401

RESUMO

Non-coding RNAs (ncRNAs) form a large portion of the mammalian genome. However, their biological functions are poorly characterized in cancers. In this study, using a newly developed tool, SomaGene, we analyze de novo somatic point mutations from the International Cancer Genome Consortium (ICGC) whole-genome sequencing data of 1,855 breast cancer samples. We identify 1030 candidates of ncRNAs that are significantly and explicitly mutated in breast cancer samples. By integrating data from the ENCODE regulatory features and FANTOM5 expression atlas, we show that the candidate ncRNAs significantly enrich active chromatin histone marks (1.9 times), CTCF binding sites (2.45 times), DNase accessibility (1.76 times), HMM predicted enhancers (2.26 times) and eQTL polymorphisms (1.77 times). Importantly, we show that the 1030 ncRNAs contain a much higher level (3.64 times) of breast cancer-associated genome-wide association (GWAS) single nucleotide polymorphisms (SNPs) than genome-wide expectation. Such enrichment has not been seen with GWAS SNPs from other cancers. Using breast cell line related Hi-C data, we then show that 82% of our candidate ncRNAs (1.9 times) significantly interact with the promoter of protein-coding genes, including previously known cancer-associated genes, suggesting the critical role of candidate ncRNA genes in the activation of essential regulators of development and differentiation in breast cancer. We provide an extensive web-based resource ( https://www.ihealthe.unsw.edu.au/research ) to communicate our results with the research community. Our list of breast cancer-specific ncRNA genes has the potential to provide a better understanding of the underlying genetic causes of breast cancer. Lastly, the tool developed in this study can be used to analyze somatic mutations in all cancers.


Assuntos
Neoplasias da Mama , Estudo de Associação Genômica Ampla , Neoplasias da Mama/genética , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Mutação Puntual , Polimorfismo de Nucleotídeo Único , RNA não Traduzido/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA