Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 21(21): 9005-9011, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34694117

RESUMO

Monolayer WTe2 is predicted to be a quantum spin Hall insulator (QSHI), and its quantized edge transport has recently been demonstrated. However, one of the essential properties of a QSHI, spin-momentum locking of the helical edge states, has yet to be experimentally validated. Here, we measure and observe gate-controlled anisotropic magnetoresistance (AMR) in monolayer WTe2 devices. Electrically tuning the Fermi energy into the band gap, a large in-plane AMR is observed and the minimum of the in-plane AMR occurs when the applied magnetic field is perpendicular to the current direction. In line with the experimental observations, the theoretical predictions based on the band structure of monolayer WTe2 demonstrate that the AMR effect originates from spin-momentum locking in the helical edge states of monolayer WTe2. Our findings reveal that the spin quantization axis of the helical edge states in monolayer WTe2 can be precisely determined from AMR measurements.

2.
Small ; 16(42): e1904322, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32914584

RESUMO

Quantum anomalous Hall effect, with a trademark of dissipationless chiral edge states for electronics/spintronics transport applications, can be realized in materials with large spin-orbit coupling and strong intrinsic magnetization. After Haldane's seminal proposal, several models have been presented to control/enhance the spin-orbit coupling and intrinsic magnetic exchange interaction. After brief introduction of Haldane model for spineless fermions, following three fundamental quantum anomalous Hall models are discussed in this perspective review: i) low-energy effective four band model for magnetic-doped topological insulator (Bi,Sb)2 Te3 thin films, ii) four band tight-binding model for graphene with magnetic adatoms, and iii) two (three) band spinful tight-binding model for ferromagnetic spin-gapless semiconductors with honeycomb (kagome) lattice where ground state is intrinsically ferromagnetic. These models cover 2D Dirac materials hosting spinless, spinful, and spin-degenerate Dirac points where various mass terms open bandgap and lead to quantum anomalous Hall effect. With emphasis on the topological phase transition driven by ferromagnetic exchange interaction and its interplay with spin-orbit-coupling, various symmetry constraints on the nature of mass term and the materialization of these models are discussed. This study will shed light on the fundamental theoretical perspectives of quantum anomalous Hall materials.

3.
Nano Lett ; 16(12): 7685-7689, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960447

RESUMO

Electrically defined semiconductor quantum dots are attractive systems for spin manipulation and quantum information processing. Heavy-holes in both Si and GaAs are promising candidates for all-electrical spin manipulation, owing to the weak hyperfine interaction and strong spin-orbit interaction. However, it has only recently become possible to make stable quantum dots in these systems, mainly due to difficulties in device fabrication and stability. Here, we present electrical transport measurements on holes in a gate-defined double quantum dot in a GaAs/AlxGa1-xAs heterostructure. We observe clear Pauli spin blockade and demonstrate that the lifting of this spin blockade by an external magnetic field is highly anisotropic. Numerical calculations of heavy-hole transport through a double quantum dot in the presence of strong spin-orbit coupling show quantitative agreement with experimental results and suggest that the observed anisotropy can be explained by both the anisotropic effective hole g-factor and the surface Dresselhaus spin-orbit interaction.

4.
Nano Lett ; 16(6): 3768-73, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27186800

RESUMO

Hydrogen-terminated diamond possesses due to transfer doping a quasi-two-dimensional (2D) hole accumulation layer at the surface with a strong, Rashba-type spin-orbit coupling that arises from the highly asymmetric confinement potential. By modulating the hole concentration and thus the potential using an electrostatic gate with an ionic-liquid dielectric architecture the spin-orbit splitting can be tuned from 4.6-24.5 meV with a concurrent spin relaxation length of 33-16 nm and hole sheet densities of up to 7.23 × 10(13) cm(-2). This demonstrates a spin-orbit interaction of unprecedented strength and tunability for a 2D hole system at the surface of a wide band gap semiconductor. With a spin relaxation length that is experimentally accessible using existing nanofabrication techniques, this result suggests that hydrogen-terminated diamond has great potential for the study and application of spin transport phenomena.

5.
Nano Lett ; 14(3): 1492-6, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24571637

RESUMO

We demonstrate a single-hole transistor using an individual acceptor dopant embedded in a silicon channel. Magneto-transport spectroscopy reveals that the ground state splits as a function of magnetic field into four states, which is unique for a single hole bound to an acceptor in a bulk semiconductor. The two lowest spin states are heavy (|m(j)| = 3/2) and light (|m(j)| = 1/2) hole-like, a two-level system that can be electrically driven and is characterized by a magnetic field dependent and long relaxation time, which are properties of interest for qubits. Although the bulklike spin splitting of a boron atom is preserved in our nanotransistor, the measured Landé g-factors, |g(hh)| = 0.81 ± 0.06 and |g(lh)| = 0.85 ± 0.21 for heavy and light holes respectively, are lower than the bulk value.

6.
ACS Nano ; 15(5): 9134-9142, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33929186

RESUMO

Phonon-polaritons (PhPs) arise from the strong coupling of photons to optical phonons. They offer light confinement and harnessing below the diffraction limit for applications including sensing, imaging, superlensing, and photonics-based communications. However, structures consisting of both suspended and supported hyperbolic materials on periodic dielectric substrates are yet to be explored. Here we investigate phonon-polaritonic crystals (PPCs) that incorporate hyperbolic hexagonal boron nitride (hBN) to a silicon-based photonic crystal. By using the near-field excitation in scattering-type scanning near-field optical microscopy (s-SNOM), we resolved two types of repetitive local field distribution patterns resembling the Archimedean-like tiling on hBN-based PPCs, i.e., dipolar-like field distributions and highly dispersive PhP interference patterns. We demonstrate the tunability of PPC band structures by varying the thickness of hyperbolic materials, supported by numerical simulations. Lastly, we conducted scattering-type nanoIR spectroscopy to confirm the interaction of hBN with photonic crystals. The introduced PPCs will provide the base for fabricating essential subdiffraction components of advanced optical systems in the mid-IR range.

7.
Sci Adv ; 5(7): eaax5080, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31281902

RESUMO

Coexistence of reversible polar distortions and metallicity leading to a ferroelectric metal, first suggested by Anderson and Blount in 1965, has so far remained elusive. Electrically switchable intrinsic electric polarization, together with the direct observation of ferroelectric domains, has not yet been realized in a bulk crystalline metal, although incomplete screening by mobile conduction charges should, in principle, be possible. Here, we provide evidence that native metallicity and ferroelectricity coexist in bulk crystalline van der Waals WTe2 by means of electrical transport, nanoscale piezoresponse measurements, and first-principles calculations. We show that, despite being a Weyl semimetal, WTe2 has switchable spontaneous polarization and a natural ferroelectric domain structure at room temperature. This new class of materials has tantalizing potential for functional nanoelectronics applications.

8.
Sci Adv ; 5(7): eaaw0409, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31281884

RESUMO

With no requirements for lattice matching, van der Waals (vdW) ferromagnetic materials are rapidly establishing themselves as effective building blocks for next-generation spintronic devices. We report a hitherto rarely seen antisymmetric magnetoresistance (MR) effect in vdW heterostructured Fe3GeTe2 (FGT)/graphite/FGT devices. Unlike conventional giant MR (GMR), which is characterized by two resistance states, the MR in these vdW heterostructures features distinct high-, intermediate-, and low-resistance states. This unique characteristic is suggestive of underlying physical mechanisms that differ from those observed before. After theoretical calculations, the three-resistance behavior was attributed to a spin momentum locking induced spin-polarized current at the graphite/FGT interface. Our work reveals that ferromagnetic heterostructures assembled from vdW materials can exhibit substantially different properties to those exhibited by similar heterostructures grown in vacuum. Hence, it highlights the potential for new physics and new spintronic applications to be discovered using vdW heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA