Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 29(1): 1-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25155036

RESUMO

Arsenic, a ubiquitous environmental toxicant, can affect lipid metabolism through mechanisms that are not well understood. We studied the effect of arsenic on serum lipids, lipid-regulating genes, and transcriptional regulator sterol regulatory element binding protein 1c (SREBP-1c). C57BL/6 mice were administered 0 or 100 ppb sodium arsenite in drinking water for 5 weeks. Arsenic exposure was associated with decreased liver weight but no change in body weight. Serum triglycerides level fell in arsenic-exposed animals, but not in fed animals, after short-term fasting. Hepatic expression of SREBP-1c was reduced in arsenic-exposed fed animals, with a 16-fold change in reduction. Similar effects were seen for SREBP-1c in white adipose tissue. However, fasting resulted in dissociation of the expression of SREBP-1c and its targets, and SREBP-1c protein content could not be shown to correlate with its mRNA expression. We conclude that arsenic modulates hepatic expression of genes involved in lipid regulation through mechanisms that are independent of SREBP-1c expression.


Assuntos
Tecido Adiposo Branco/metabolismo , Arsenitos/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Compostos de Sódio/farmacologia , Proteína de Ligação a Elemento Regulador de Esterol 1/biossíntese , Animais , Arsênio/farmacologia , Masculino , Camundongos , Triglicerídeos/biossíntese
2.
J Appl Toxicol ; 34(5): 498-505, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23765520

RESUMO

Arsenic (As) is considered a top environmental chemical of human health because it has been linked to adverse health effects including cancer, diabetes, cardiovascular disease, and reproductive and developmental problems. In several cell culture and animal models, As acts as an endocrine disruptor, which may underlie many of its health effects. Previous work showed that steroid receptor (SR)-driven gene expression is disrupted in cells treated with inorganic As (arsenite, iAs(+3)). In those studies, low iAs(+3) concentrations (0.1-0.7 µM) stimulated hormone-inducible transcription, whereas somewhat higher but still non-cytotoxic levels (1-3 µM) inhibited transcription. This investigation focuses on the mechanisms underlying these inhibitory effects and evaluates the role of methylated trivalent As metabolites on SR function. Recent evidence suggests that, compared with iAs, methylated forms may have distinct biochemical effects. Here, fluorescence polarization (FP) experiments utilizing purified, hormone-bound human glucocorticoid (GR) and progesterone receptor (PR) have demonstrated that neither inorganic (iAs(+3)) nor dimethylated (DMA(+3)) species of trivalent As affect receptor interactions with glucocorticoid DNA response elements (GREs). However, monomethylated forms (monomethylarsenite, MMA(+3) and monomethylarsonic diglutathione, MADG) strongly inhibit GR-GRE and PR-GRE binding. Additionally, speciation studies of iAs(+3)-treated H4IIE rat hepatoma cells show that, under treatment conditions that cause inhibition of hormone-inducible gene transcription, the intracellular concentration of MADG is sufficient to inhibit GR-GRE and PR-GRE interactions in vivo. These results indicate that arsenic's inhibitory endocrine disruption effects are probably caused in part by methylated metabolites' disruption of SR ability to bind DNA response elements that are crucial to hormone-driven gene transcription.


Assuntos
Arsenitos/toxicidade , DNA/genética , Disruptores Endócrinos/toxicidade , Receptores de Esteroides/genética , Elementos de Resposta/genética , Transcrição Gênica/efeitos dos fármacos , Animais , Arsenitos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Disruptores Endócrinos/metabolismo , Polarização de Fluorescência , Metilação , Ratos , Relação Estrutura-Atividade
3.
J Pharm Pract ; 35(5): 747-751, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33813934

RESUMO

BACKGROUND: Although strategies for optimization of pharmacologic therapy in patients with heart failure with reduced ejection fraction (HFrEF) are scripted by guidelines, data from HF registries suggests that guideline-directed medical therapies (GDMT) are underutilized among eligible patients. Whether this discrepancy reflects medication intolerance, contraindications, or a quality of care issue remains unclear. OBJECTIVE: The objective of this initiative was to identify reasons for underutilization and under-dosing of HFrEF therapy in patients at a large, academic medical center. METHODS: Among 500 patients with HFrEF enrolled in a quality improvement project at a tertiary center, we evaluated usage and dosing of 4 categories of GDMT: ACE inhibitors/Angiotensin Receptor Blockers (ACE-i/ARB), Angiotensin Receptor-Neprilysin Inhibitors (ARNi), beta blockers, and Mineralocorticoid Receptor Antagonists (MRA). Reasons for nonprescription and usage of suboptimal doses were abstracted from notes in the chart and from telephone review of previous medication trials with the patient. RESULTS: Of 500 patients identified, 472 subjects had complete data for analysis. Among eligible patients, ACE-i/ARB were prescribed in 81.4% (293 of 360) and beta blockers in 94.4% (442 of 468). Of these patients, 10.6% were prescribed target doses of ACE-i/ARB and 12.4% were prescribed target doses of beta blockers. Utilization of other categories of GDMT was lower, with 54% of eligible patients prescribed MRAs and 27% prescribed an ARNi. In most cases, the reasons for nonprescription or under-dosing of GDMT were not apparent on review of the health record or discussion with the patient. CONCLUSION: Clear rationale for nonprescription and under-dosing of GDMT often cannot be ascertained from detailed review and is only rarely related to documented medication intolerance or contraindications, suggesting an opportunity for quality improvement.


Assuntos
Insuficiência Cardíaca , Antagonistas Adrenérgicos beta/uso terapêutico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Neprilisina/farmacologia , Neprilisina/uso terapêutico , Receptores de Angiotensina/uso terapêutico , Volume Sistólico
4.
Clin Cardiol ; 43(1): 4-13, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31725920

RESUMO

Although optimal pharmacological therapy for heart failure with reduced ejection fraction (HFrEF) is carefully scripted by treatment guidelines, many eligible patients are not treated with guideline-directed medical therapy (GDMT) in clinical practice. We designed a strategy for remote optimization of GDMT on a population scale in patients with HFrEF leveraging nonphysician providers. An electronic health record-based algorithm was used to identify a cohort of patients with a diagnosis of heart failure (HF) and ejection fraction (EF) ≤ 40% receiving longitudinal follow-up at our center. Those with end-stage HF requiring inotropic support, mechanical circulatory support, or transplantation and those enrolled in hospice or palliative care were excluded. Treating providers were approached for consent to adjust medical therapy according to a sequential, stepped titration algorithm modeled on the current American College of Cardiology (ACC)/American Heart Association (AHA) HF Guidelines within a collaborative care agreement. The program was approved by the institutional review board at Brigham and Women's Hospital with a waiver of written informed consent. All patients provided verbal consent to participate. A navigator then facilitated medication adjustments by telephone and conducted longitudinal surveillance of laboratories, blood pressure, and symptoms. Each titration step was reviewed by a pharmacist with supervision as needed from a nurse practitioner and HF cardiologist. Patients were discharged from the program to their primary cardiologist after achievement of an optimal or maximally tolerated regimen. A navigator-led remote management strategy for optimization of GDMT may represent a scalable population-level strategy for closing the gap between guidelines and clinical practice in patients with HFrEF.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Navegação de Pacientes/métodos , Telemedicina/métodos , Idoso , Algoritmos , Feminino , Seguimentos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Guias de Prática Clínica como Assunto , Projetos de Pesquisa , Volume Sistólico
5.
Environ Health Perspect ; 116(2): 165-72, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18288313

RESUMO

BACKGROUND: Chronic exposure to excess arsenic in drinking water has been strongly associated with increased risks of multiple cancers, diabetes, heart disease, and reproductive and developmental problems in humans. We previously demonstrated that As, a potent endocrine disruptor at low, environmentally relevant levels, alters steroid signaling at the level of receptor-mediated gene regulation for all five steroid receptors. OBJECTIVES: The goal of this study was to determine whether As can also disrupt gene regulation via the retinoic acid (RA) receptor (RAR) and/or the thyroid hormone (TH) receptor (TR) and whether these effects are similar to previously observed effects on steroid regulation. METHODS AND RESULTS: Human embryonic NT2 or rat pituitary GH3 cells were treated with 0.01-5 microM sodium arsenite for 24 hr, with or without RA or TH, respectively, to examine effects of As on receptor-mediated gene transcription. At low, noncytotoxic doses, As significantly altered RAR-dependent gene transcription of a transfected RAR response element-luciferase construct and the native RA-inducible cytochrome P450 CYP26A gene in NT2 cells. Likewise, low-dose As significantly altered expression of a transfected TR response element-luciferase construct and the endogenous TR-regulated type I deiodinase (DIO1) gene in a similar manner in GH3 cells. An amphibian ex vivo tail metamorphosis assay was used to examine whether endocrine disruption by low-dose As could have specific pathophysiologic consequences, because tail metamorphosis is tightly controlled by TH through TR. TH-dependent tail shrinkage was inhibited in a dose-dependent manner by 0.1- 4.0 microM As. CONCLUSIONS: As had similar effects on RAR- and TR-mediated gene regulation as those previously observed for the steroid receptors, suggesting a common mechanism or action. Arsenic also profoundly affected a TR-dependent developmental process in a model animal system at very low concentrations. Because RAR and TH are critical for both normal human development and adult function and their dysregulation is associated with many disease processes, disruption of these hormone receptor-dependent processes by As is also potentially relevant to human developmental problems and disease risk.


Assuntos
Arsênio/toxicidade , Disruptores Endócrinos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Metamorfose Biológica/efeitos dos fármacos , Receptores do Ácido Retinoico/efeitos dos fármacos , Receptores dos Hormônios Tireóideos/efeitos dos fármacos , Hormônios Tireóideos/fisiologia , Animais , Linhagem Celular Tumoral , Humanos , Metamorfose Biológica/fisiologia , Receptores do Ácido Retinoico/genética , Receptores dos Hormônios Tireóideos/genética , Transcrição Gênica , Xenopus laevis/crescimento & desenvolvimento
6.
Toxicol Pathol ; 36(6): 805-17, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18812580

RESUMO

Chronic ingestion of arsenic is associated with increased incidence of respiratory and cardiovascular diseases. To investigate the role of arsenic in early events in vascular pathology, C57BL/6 mice ingested drinking water with or without 50 ppb sodium arsenite (AsIII) for four, five, or eight weeks. At five and eight weeks, RNA from the lungs of control and AsIII-exposed animals was processed for microarray. Sixty-five genes were significantly and differentially expressed. Differential expression of extracellular matrix (ECM) gene transcripts was particularly compelling, as 91% of genes in this category, including elastin and collagen, were significantly decreased. In additional experiments, real-time RT-PCR showed an AsIII-induced decrease in many of these ECM gene transcripts in the heart and NIH3T3 fibroblast cells. Histological stains for collagen and elastin show a distinct disruption in the ECM surrounding small arteries in the heart and lung of AsIII-exposed mice. Immunohistochemical detection of alpha-smooth muscle actin in blood vessel walls was decreased in the AsIII-exposed animals. These data reveal a functional link between AsIII exposure and disruption in the vascular ECM. These AsIII-induced early pathological events may predispose humans to respiratory and cardiovascular diseases linked to chronic low-dose AsIII exposure.


Assuntos
Arsenitos/toxicidade , Vasos Sanguíneos/efeitos dos fármacos , Proteínas da Matriz Extracelular/genética , Expressão Gênica/efeitos dos fármacos , Miocárdio/patologia , Compostos de Sódio/toxicidade , Animais , Arsênio/toxicidade , Arsenitos/administração & dosagem , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Colágeno/genética , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/patologia , Elastina/genética , Proteínas de Choque Térmico/genética , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Compostos de Sódio/administração & dosagem
7.
Chem Biol Interact ; 173(2): 129-40, 2008 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-18396267

RESUMO

Nutritional studies in laboratory animals have long shown that various dietary components can contribute to altered gene expression and metabolism, but diet alone has not been considered in whole animal genomic studies. In this study, global gene expression changes in mice fed either a non-purified chow or a purified diet were investigated and background metal levels in the two diets were measured by ICP-MS. C57BL/6J mice were raised for 5 weeks on either the cereal-based, non-purified LRD-5001 diet or the purified, casein-based AIN-76A diet, as part of a larger study examining the effects of low dose arsenic (As) in the diet or drinking water. Affymetrix Mouse Whole Genome 430 2.0 microarrays were used to assess gene expression changes in the liver and lung. Microarray analysis revealed that animals fed the LRD-5001 diet displayed a significantly higher hepatic expression of Phase I and II metabolism genes as well as other metabolic genes. The LRD-5001 diet masked the As-induced gene expression changes that were clearly seen in the animals fed the AIN-76A diet when each dietary group was exposed to 100 ppb As in drinking water. Trace metal analysis revealed that the LRD-5001 diet contained a mixture of inorganic and organic As at a total concentration of 390 ppb, while the AIN-76A diet contained approximately 20 ppb. These findings indicate that the use of non-purified diets may profoundly alter observable patterns of change induced by arsenic and, likely, by other experimental treatments, particularly, altering gene and protein expression.


Assuntos
Ração Animal/efeitos adversos , Expressão Gênica/efeitos dos fármacos , Fígado/fisiologia , Pulmão/fisiologia , Ração Animal/análise , Animais , Animais de Laboratório , Arsênio/farmacologia , Contaminação de Alimentos , Perfilação da Expressão Gênica/métodos , Genoma , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Espectrometria de Massas , Metais/análise , Metais/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
BMC Genomics ; 8: 477, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-18154678

RESUMO

BACKGROUND: Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant. RESULTS: Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT)-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT). The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs. CONCLUSION: The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for the environmental sciences.


Assuntos
Cádmio/toxicidade , Daphnia/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Metalotioneína/genética , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores , DNA Complementar , Daphnia/metabolismo , Bases de Dados Genéticas , Relação Dose-Resposta a Droga , Monitoramento Ambiental , Genoma/efeitos dos fármacos , Metalotioneína/metabolismo , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Toxicol Sci ; 98(1): 75-86, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17283378

RESUMO

Arsenic (As) contamination of drinking water is considered a serious worldwide environmental health threat that is associated with increased disease risks including skin, lung, bladder, and other cancers; type 2 diabetes; vascular and cardiovascular diseases; reproductive and developmental effects; and neurological and cognitive effects. Increased health risks may occur at as low as 10-50 ppb, while biological effects have been observed in experimental animal and cell culture systems at much lower levels. We previously reported that As is a potent endocrine disruptor, altering gene regulation by the closely related glucocorticoid, mineralocorticoid, progesterone, and androgen steroid receptors (SRs) at concentrations as low as 0.01 microM ( approximately 0.7 ppb). Very low doses enhanced hormone-mediated gene transcription, whereas slightly higher but still noncytotoxic doses were suppressive. We report here that As also disrupts the more distally related estrogen receptor (ER) both in vivo and in cell culture. At noncytotoxic doses (1-50 micromol/kg arsenite) As strongly suppressed ER-dependent gene transcription of the 17beta-estradiol (E2)-inducible vitellogenin II gene in chick embryo liver in vivo. In cell culture, noncytotoxic levels (0.25-3 microM, approximately 20-225 ppb) of As significantly inhibited E2-mediated gene activation of an ER-regulated reporter gene and the native ER-regulated GREB1 gene in human breast cancer MCF-7 cells. While the effects of As on ER-dependent gene regulation were generally similar to As effects on the other SRs, there were specific differences, particularly the lack of significant enhancement at the lowest doses, that may provide insights into possible mechanisms.


Assuntos
Arsênio/toxicidade , Disruptores Endócrinos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Estrogênio/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Meios de Cultura , Relação Dose-Resposta a Droga , Feminino , Humanos , Indicadores e Reagentes , Luciferases/biossíntese , Luciferases/genética , Espectrometria de Massas , Proteínas de Neoplasias/biossíntese , RNA/biossíntese , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional , Transfecção
10.
Toxicol Sci ; 100(1): 75-87, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17682005

RESUMO

The mechanisms of action of drinking water arsenic in the lung and the threshold for biologic effects remain controversial. Our study utilizes Affymetrix 22,690 transcript oligonucleotide microarrays to assess the long-term effects of increasing doses of drinking water arsenic on expression levels in the mouse lung. Mice were exposed at levels commonly found in contaminated drinking water wells in the United States (0, 0.1, 1 ppb), as well as the 50 ppb former maximum contaminant level, for 5 weeks. The expression profiles revealed modification of a number of important signaling pathways, many with corroborating evidence of arsenic responsiveness. We observed statistically significant expression changes for transcripts involved in angiogenesis, lipid metabolism, oxygen transport, apoptosis, cell cycle, and immune response. Validation by reverse transcription-PCR and immunoblot assays confirmed expression changes for a subset of transcripts. These data identify arsenic-modified signaling pathways that will help guide investigations into mechanisms of arsenic's health effects and clarify the threshold for biologic effects and potential disease risk.


Assuntos
Arsenitos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Compostos de Sódio/toxicidade , Poluentes Químicos da Água/toxicidade , Abastecimento de Água , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Western Blotting , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Análise por Conglomerados , Biologia Computacional , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica/métodos , Imunidade/efeitos dos fármacos , Imunidade/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Análise de Sequência com Séries de Oligonucleotídeos , Oxigênio/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medição de Risco , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo , Estados Unidos
11.
Toxicol Sci ; 97(1): 103-10, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17324950

RESUMO

We used proximal tubules isolated from the killifish, Fundulus heteroclitus, to examine the effect of environmentally relevant, sublethal levels of arsenic on the function and expression of MRP2, an ABC transporter that transports xenobiotics into urine, including arsenic-glutathione conjugates. Exposure of fish to arsenic as sodium arsenite (4-14 days) increased both MRP2 expression in the apical membrane of proximal tubules and MRP2-mediated transport activity. The level of MRP2 mRNA was not affected, suggesting a posttranslational mechanism of action. Acute exposure of proximal tubules isolated from control fish to 75-375 ppb arsenic decreased mitochondrial function (inner membrane electrical potential). However, in tubules from fish that were preexposed to arsenic (4-14 days), no such effect on mitochondrial function was observed. Thus, chronic in vivo exposure to arsenic induces mechanisms that protect proximal tubules during subsequent arsenic exposure. Upregulation of MRP2 expression and activity is one likely contributing factor.


Assuntos
Arsenitos/toxicidade , Tolerância a Medicamentos , Fundulidae , Túbulos Renais Proximais/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Compostos de Sódio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Arsenitos/metabolismo , Relação Dose-Resposta a Droga , Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Túbulos Renais Proximais/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Metotrexato/análogos & derivados , Metotrexato/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , RNA Mensageiro/metabolismo , Compostos de Sódio/metabolismo , Distribuição Tecidual , Regulação para Cima , Poluentes Químicos da Água/metabolismo
12.
Mol Cell Biol ; 23(2): 754-61, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12509472

RESUMO

Interstrand cross-links (ICLs) make up a unique class of DNA lesions in which both strands of the double helix are covalently joined, precluding strand opening during replication and transcription. The repair of DNA ICLs has become a focus of study since ICLs are recognized as the main cytotoxic lesion inflicted by an array of alkylating compounds used in cancer treatment. As is the case for double-strand breaks, a damage-free homologous copy is essential for the removal of ICLs in an error-free manner. However, recombination-independent mechanisms may exist to remove ICLs in an error-prone fashion. We have developed an in vivo reactivation assay that can be used to examine the removal of site-specific mitomycin C-mediated ICLs in mammalian cells. We found that the removal of the ICL from the reporter substrate could take place in the absence of undamaged homologous sequences in repair-proficient cells, suggesting a cross-link repair mechanism that is independent of homologous recombination. Systematic analysis of nucleotide excision repair mutants demonstrated the involvement of transcription-coupled nucleotide excision repair and a partial requirement for the lesion bypass DNA polymerase eta encoded by the human POLH gene. From these observations, we propose the existence of a recombination-independent and mutagenic repair pathway for the removal of ICLs in mammalian cells.


Assuntos
Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Mitomicina/farmacologia , Animais , Anticorpos Monoclonais , Sequência de Bases , Células CHO , Linhagem Celular , Cricetinae , Reagentes de Ligações Cruzadas/farmacologia , Dano ao DNA , DNA Complementar/metabolismo , DNA Polimerase Dirigida por DNA/genética , Humanos , Immunoblotting , Luciferases/metabolismo , Dados de Sequência Molecular , Mutagênese , Mutação , Oligonucleotídeos/farmacologia , Plasmídeos/metabolismo , Recombinação Genética , Transcrição Gênica , Células Tumorais Cultivadas
13.
Chem Biol Interact ; 168(2): 159-68, 2007 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-17512921

RESUMO

The Xeroderma Pigmentosum A (XPA) protein is involved in the DNA damage recognition and repair complex formation steps of nucleotide excision repair (NER), and has been shown to preferentially bind to various forms of DNA damage including bulky lesions. DNA interstrand crosslinks are of particular interest as a form of DNA damage, since these lesions involve both strands of duplex DNA and present special challenges to the repair machinery, and mitomycin C (MMC) is one of several useful cancer chemotherapy drugs that induce these lesions. Purified XPA and the minimal DNA-binding domain of XPA are both fully capable of preferentially binding to MMC-DNA interstrand crosslinks in the absence of other proteins from the NER complex. Circular dichroism (CD) and gel shift assays were used to investigate XPA-DNA binding and to assess changes in secondary structure induced as a consequence of the interaction of XPA with model MMC-crosslinked and unmodified DNAs. These studies revealed that while XPA demonstrates only a modest increase in affinity for adducted DNA, it adopts a different conformation when bound to MMC-damaged DNA than when bound to undamaged DNA. This change in conformation may be more important in recruiting other proteins into a competent NER complex at damaged sites than preferential binding per se. Arsenic had little effect on XPA binding even at toxic concentrations, whereas cadmium reduced XPA binding to DNA to 10-15% that of Zn-XPA, and zinc addition could only partially restore activity. In addition, there was little or no change in conformation when Cd-XPA bound MMC-crosslinked DNA even though it demonstrated preferential binding, which may contribute to the mechanism by which cadmium can act as a co-mutagen and co-carcinogen.


Assuntos
Antibióticos Antineoplásicos/metabolismo , Arsênio/farmacologia , Cádmio/farmacologia , Adutos de DNA/metabolismo , Reparo do DNA , Mitomicina/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Antibióticos Antineoplásicos/farmacologia , Dicroísmo Circular , Interações Medicamentosas , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Mitomicina/farmacologia , Proteína de Xeroderma Pigmentoso Grupo A/farmacologia , Dedos de Zinco
14.
Environ Toxicol Chem ; 26(12): 2704-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18020683

RESUMO

Exposure to arsenic is known to cause adverse effects in aquatic biota and wildlife and is of major concern to human health. Although numerous studies have investigated the toxicity of arsenic, little is known about the effects of acquired tolerance on arsenic accumulation and toxicity outside of cell culture models. Accordingly, studies were conducted on the estuarine fish, Fundulus heteroclitus, that were preexposed to nontoxic concentrations of arsenic (as sodium arsenite; 0.7 and 106 micromol As/L) for 96 h or naïve to elevated arsenic to determine the effects of acclimation on arsenic toxicity and accumulation. Tolerance to arsenic was rapidly (96 h) acquired in killifish that were preexposed. In toxicity tests with arsenic-acclimated killifish, preexposure to 106 micromol As/L resulted in a reduction in toxicity when compared to naïve animals. Toxicity in arsenic-acclimated fish also was distinguished by a delayed onset of mortality that manifested in dose-dependent fashion and was significant even for the lower acclimation concentration (0.7 micromol As/L). The increase tolerance acquired following preexposure to 106 micromol As/L for 96 h was associated with lower concentrations of arsenic in all monitored tissues (e.g., gill, liver, kidney) and the whole body when fish were exposed to 240 micromol As/L for an additional 96 h. In accordance with these observations, expression of the multidrug resistance- associated protein (MRP)-2 gene, which is responsible for transporting arsenic conjugated to glutathione out of cells, was increased in the liver of arsenic-acclimated fish.


Assuntos
Arsênio/metabolismo , Arsênio/toxicidade , Fundulidae/metabolismo , Animais , Arsênio/análise , Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , RNA/efeitos dos fármacos , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Fatores de Tempo , Testes de Toxicidade Aguda
15.
Environ Health Perspect ; 114(8): 1193-8, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16882524

RESUMO

The mechanism(s) by which arsenic exposure contributes to human cancer risk is unknown ; however, several indirect cocarcinogenesis mechanisms have been proposed. Many studies support the role of As in altering one or more DNA repair processes. In the present study we used individual-level exposure data and biologic samples to investigate the effects of As exposure on nucleotide excision repair in two study populations, focusing on the excision repair cross-complement 1 (ERCC1) component. We measured drinking water, urinary, or toenail As levels and obtained cryopreserved lymphocytes of a subset of individuals enrolled in epidemiologic studies in New Hampshire (USA) and Sonora (Mexico). Additionally, in corroborative laboratory studies, we examined the effects of As on DNA repair in a cultured human cell model. Arsenic exposure was associated with decreased expression of ERCC1 in isolated lymphocytes at the mRNA and protein levels. In addition, lymphocytes from As-exposed individuals showed higher levels of DNA damage, as measured by a comet assay, both at baseline and after a 2-acetoxyacetylaminofluorene (2-AAAF) challenge. In support of the in vivo data, As exposure decreased ERCC1 mRNA expression and enhanced levels of DNA damage after a 2-AAAF challenge in cell culture. These data provide further evidence to support the ability of As to inhibit the DNA repair machinery, which is likely to enhance the genotoxicity and mutagenicity of other directly genotoxic compounds, as part of a cocarcinogenic mechanism of action.


Assuntos
Arsênio/efeitos adversos , Arsênio/análise , Reparo do DNA/efeitos dos fármacos , Abastecimento de Água/análise , Adulto , Western Blotting , Ensaio Cometa , Dano ao DNA , Proteínas de Ligação a DNA/genética , Eletroforese em Gel de Poliacrilamida , Endonucleases/genética , Exposição Ambiental , Feminino , Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Humanos , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Unhas/química , New Hampshire/epidemiologia , RNA/biossíntese , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Environ Toxicol Chem ; 25(1): 182-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16494240

RESUMO

Investigations were conducted to determine acute (48-h) effects of cadmium and zinc presented individually and in combination on Ceriodaphnia dubia, Daphnia magna, Daphnia ambigua, and Daphnia pulex. Toxicity tests were conducted with single metals to determine lethal effects concentrations (lethal concentrations predicted for a given percent [x] of a population, LCx value). These were used to derive metal combinations that spanned a range of effects and included mixtures of LC15, LC50, and LC85 values calculated for each metal and species. In single-metal tests, 48-h LC50 values ranged from 0.09 to 0.9 micromol/L and 4 to 12.54 micromol/L for cadmium and zinc, respectively. For each metal, D. magna was most tolerant and showed a different pattern of response from all others as determined by slope of concentration-response curves. In the combined metal treatments, all daphnids showed a similar pattern of response when LC15 concentrations were combined. This trend continued with few exceptions when LC15 concentrations of cadmium were combined with LC50 or LC85 values for zinc. However, when this treatment was reversed (LC15, zinc + LC50 or LC85, cadmium), responses of all species except D. magna indicated less-than-additive effects. For C. dubia, a near complete reduction in toxicity was observed when the LC15 for zinc was combined with LC85 for cadmium. Multimetal tests with D. magna did not differ from additive. Collectively, these studies suggest that D. magna may not be representative of other cladocerans.


Assuntos
Cádmio/toxicidade , Cladocera , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade , Animais , Interações Medicamentosas , Dose Letal Mediana , Medição de Risco
17.
PLoS One ; 11(3): e0151089, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26986722

RESUMO

The majority of ovarian tumors eventually recur in a drug resistant form. Using cisplatin sensitive and resistant cell lines assembled into 3D spheroids we profiled gene expression and identified candidate mechanisms and biological pathways associated with cisplatin resistance. OVCAR-8 human ovarian carcinoma cells were exposed to sub-lethal concentrations of cisplatin to create a matched cisplatin-resistant cell line, OVCAR-8R. Genome-wide gene expression profiling of sensitive and resistant ovarian cancer spheroids identified 3,331 significantly differentially expressed probesets coding for 3,139 distinct protein-coding genes (Fc >2, FDR < 0.05) (S2 Table). Despite significant expression changes in some transporters including MDR1, cisplatin resistance was not associated with differences in intracellular cisplatin concentration. Cisplatin resistant cells were significantly enriched for a mesenchymal gene expression signature. OVCAR-8R resistance derived gene sets were significantly more biased to patients with shorter survival. From the most differentially expressed genes, we derived a 17-gene expression signature that identifies ovarian cancer patients with shorter overall survival in three independent datasets. We propose that the use of cisplatin resistant cell lines in 3D spheroid models is a viable approach to gain insight into resistance mechanisms relevant to ovarian tumors in patients. Our data support the emerging concept that ovarian cancers can acquire drug resistance through an epithelial-to-mesenchymal transition.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Ovário/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Recidiva Local de Neoplasia , Ovário/metabolismo , Esferoides Celulares , Células Tumorais Cultivadas
18.
Environ Health Perspect ; 113(11): 1615-21, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16263520

RESUMO

Human biomonitoring investigations have provided data on a wide array of chemicals in blood and urine and in other tissues and fluids such as hair and human milk. These data have prompted questions such as a) What is the relationship between levels of environmental chemicals in humans and external exposures? b) What is the baseline or "background" level against which individual levels should be compared? and c) How can internal levels be used to draw conclusions about individual and/or population health? An interdisciplinary panel was convened for a 1-day workshop in November 2004 with the charge of focusing on three specific aspects of biomonitoring: characteristics of scientifically robust biomonitoring studies, interpretation of human biomonitoring data for potential risks to human health, and communication of results, uncertainties, and limitations of biomonitoring studies. In this report we describe the recommendations of the panel.


Assuntos
Monitoramento Ambiental , Comunicação , Saúde Ambiental , Poluentes Ambientais/análise , Humanos , Projetos de Pesquisa , Medição de Risco
19.
Toxicol Sci ; 86(2): 248-57, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15888669

RESUMO

Trivalent inorganic arsenic (arsenite, arsenic trioxide, As(III)) is a primary contaminant of groundwater supplies worldwide. As(III), marketed as trisenox, is also an FDA-approved agent to treat cancer It has been previously shown by our laboratory that As(III) administered at doses lower than a therapeutic anticancer dose results in an increase in tumor formation and blood vessel density of tumors. In this work it was found that chronic administration of As(III) approaching the EPA action level of 10 ppb, given in the drinking water of mice 5 weeks prior to B16-F10 melanoma implantation, increased the growth rate of primary tumors and the number of metastases to the lung. Further, levels of arsenic in the tumor and lung were found to be much greater than those in the blood and similar to pro-angiogenic As(III) doses. Levels of hypoxia inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) surrounding the blood vessels in the tumors of the As(III)-treated mice were also found to be increased. Exposure of isolated B16-F10 tumor cells to chronic (3 or 7 day) but not acute (4 h) low-dose As(III) was found to increase HIF-1alpha expression and secretion of VEGF. Finally, coadministration of an inhibitor of HIF (YC-1) or a VEGFR-2 kinase inhibitor (SU5416) was found to antagonize the pro-angiogenic effects of low-dose As(III). Together, these results suggest that chronic exposure to low-dose As(III) could stimulate growth of tumors through a HIF-dependent stimulation of angiogenesis.


Assuntos
Arsênio/toxicidade , Neoplasias Pulmonares/irrigação sanguínea , Melanoma Experimental/irrigação sanguínea , Neoplasias Cutâneas/irrigação sanguínea , Fatores de Transcrição/biossíntese , Animais , Arsênio/análise , Arsênio/sangue , Linhagem Celular Tumoral , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Pulmão/metabolismo , Neoplasias Pulmonares/secundário , Masculino , Melanoma Experimental/secundário , Camundongos , Camundongos Nus , Miocárdio/metabolismo , Transplante de Neoplasias , Neovascularização Patológica , Transdução de Sinais , Neoplasias Cutâneas/patologia , Fatores de Transcrição/metabolismo , Carga Tumoral , Fator A de Crescimento do Endotélio Vascular/biossíntese
20.
Environ Health Perspect ; 111(6): 825-35, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12760830

RESUMO

Examining global effects of toxic metals on gene expression can be useful for elucidating patterns of biological response, discovering underlying mechanisms of toxicity, and identifying candidate metal-specific genetic markers of exposure and response. Using a 1,200 gene nylon array, we examined changes in gene expression following low-dose, acute exposures of cadmium, chromium, arsenic, nickel, or mitomycin C (MMC) in BEAS-2B human bronchial epithelial cells. Total RNA was isolated from cells exposed to 3 M Cd(II) (as cadmium chloride), 10 M Cr(VI) (as sodium dichromate), 3 g/cm2 Ni(II) (as nickel subsulfide), 5 M or 50 M As(III) (as sodium arsenite), or 1 M MMC for 4 hr. Expression changes were verified at the protein level for several genes. Only a small subset of genes was differentially expressed in response to each agent: Cd, Cr, Ni, As (5 M), As (50 M), and MMC each differentially altered the expression of 25, 44, 31, 110, 65, and 16 individual genes, respectively. Few genes were commonly expressed among the various treatments. Only one gene was altered in response to all four metals (hsp90), and no gene overlapped among all five treatments. We also compared low-dose (5 M, noncytotoxic) and high-dose (50 M, cytotoxic) arsenic treatments, which surprisingly, affected expression of almost completely nonoverlapping subsets of genes, suggesting a threshold switch from a survival-based biological response at low doses to a death response at high doses.


Assuntos
Perfilação da Expressão Gênica , Genômica , Pulmão/citologia , Pulmão/patologia , Metais Pesados/efeitos adversos , Análise de Sequência com Séries de Oligonucleotídeos , Proteômica , Técnicas de Cultura de Células , Morte Celular , Relação Dose-Resposta a Droga , Células Epiteliais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA