Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 295(43): 14578-14591, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32788218

RESUMO

Coral reefs are experiencing precipitous declines around the globe with coral diseases and temperature-induced bleaching being primary drivers of these declines. Regulation of apoptotic cell death is an important component in the coral stress response. Although cnidaria are known to contain complex apoptotic signaling pathways, similar to those in vertebrates, the mechanisms leading to cell death are largely unexplored. We identified and characterized two caspases each from Orbicella faveolata, a disease-sensitive reef-building coral, and Porites astreoides, a disease-resistant reef-building coral. The caspases are predicted homologs of the human executioner caspases-3 and -7, but OfCasp3a (Orbicella faveolata caspase-3a) and PaCasp7a (Porites astreoides caspase-7a), which we show to be DXXDases, contain an N-terminal caspase activation/recruitment domain (CARD) similar to human initiator/inflammatory caspases. OfCasp3b (Orbicella faveolata caspase-3b) and PaCasp3 (Porites astreoides caspase-3), which we show to be VXXDases, have short pro-domains, like human executioner caspases. Our biochemical analyses suggest a mechanism in coral which differs from that of humans, where the CARD-containing DXXDase is activated on death platforms but the protease does not directly activate the VXXDase. The first X-ray crystal structure of a coral caspase, of PaCasp7a determined at 1.57 Å resolution, reveals a conserved fold and an N-terminal peptide bound near the active site that may serve as a regulatory exosite. The binding pocket has been observed in initiator caspases of other species. These results suggest mechanisms for the evolution of substrate selection while maintaining common activation mechanisms of CARD-mediated dimerization.


Assuntos
Antozoários/enzimologia , Caspases/metabolismo , Sequência de Aminoácidos , Animais , Antozoários/química , Antozoários/citologia , Antozoários/metabolismo , Apoptose , Caspases/química , Recifes de Corais , Cristalografia por Raios X , Ativação Enzimática , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Alinhamento de Sequência , Especificidade por Substrato
2.
Biochem J ; 476(22): 3475-3492, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31675069

RESUMO

Apoptotic caspases evolved with metazoans more than 950 million years ago (MYA), and a series of gene duplications resulted in two subfamilies consisting of initiator and effector caspases. The effector caspase genes (caspases-3, -6, and -7) were subsequently fixed into the Chordata phylum more than 650 MYA when the gene for a common ancestor (CA) duplicated, and the three effector caspases have persisted throughout mammalian evolution. All caspases prefer an aspartate residue at the P1 position of substrates, so each caspase evolved discrete cellular roles through changes in substrate recognition at the P4 position combined with allosteric regulation. We examined the evolution of substrate specificity in caspase-6, which prefers valine at the P4 residue, compared with caspases-3 and -7, which prefer aspartate, by reconstructing the CA of effector caspases (AncCP-Ef1) and the CA of caspase-6 (AncCP-6An). We show that AncCP-Ef1 is a promiscuous enzyme with little distinction between Asp, Val, or Leu at P4. The specificity of caspase-6 was defined early in its evolution, where AncCP-6An demonstrates a preference for Val over Asp at P4. Structures of AncCP-Ef1 and of AncCP-6An show a network of charged amino acids near the S4 pocket that, when combined with repositioning a flexible active site loop, resulted in a more hydrophobic binding pocket in AncCP-6An. The ancestral protein reconstructions show that the caspase-hemoglobinase fold has been conserved for over 650 million years and that only three substitutions in the scaffold are necessary to shift substrate selection toward Val over Asp.


Assuntos
Caspases Efetoras/química , Evolução Molecular , Mamíferos/genética , Animais , Caspases Efetoras/genética , Caspases Efetoras/metabolismo , Humanos , Mamíferos/classificação , Filogenia , Conformação Proteica , Especificidade por Substrato
3.
Arch Virol ; 159(10): 2771-5, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24796554

RESUMO

GBK2 is a bacteriophage, isolated from a backyard compost pile, that infects the thermophile Geobacillus kaustophilus. GBK2 has a circularly permuted genome of 39,078 bp with a G+C content of 43 %. Annotation of the genome reveals 62 putative open reading frames (ORFs), 25 of which (40.3 %) show homology to known proteins and 37 of which (59.7 %) are proteins with unknown functions. Twelve of the identified ORFs had the greatest homology to genes from the phage SPP1, a phage that infects the mesophile Bacillus subtilis. The overall genomic arrangement of GBK2 is similar to that of SPP1, with the majority of GBK2 SPP1-like genes coding for proteins involved in DNA replication and metabolism.


Assuntos
Bacteriófagos/genética , Genoma Viral/genética , Geobacillus/virologia , Fases de Leitura Aberta/genética , Proteínas Virais/genética , Bacillus subtilis/virologia , Bacteriófagos/isolamento & purificação , Composição de Bases , Sequência de Bases , DNA Viral/genética , Temperatura Alta , Dados de Sequência Molecular , Análise de Sequência de DNA , Microbiologia do Solo
4.
Biosci Rep ; 41(1)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33448281

RESUMO

Caspase (or cysteinyl-aspartate specific proteases) enzymes play important roles in apoptosis and inflammation, and the non-identical but overlapping specificity profiles (that is, cleavage recognition sequence) direct cells to different fates. Although all caspases prefer aspartate at the P1 position of the substrate, the caspase-6 subfamily shows preference for valine at the P4 position, while caspase-3 shows preference for aspartate. In comparison with human caspases, caspase-3a from zebrafish has relaxed specificity and demonstrates equal selection for either valine or aspartate at the P4 position. In the context of the caspase-3 conformational landscape, we show that changes in hydrogen bonding near the S3 subsite affect selection of the P4 amino acid. Swapping specificity with caspase-6 requires accessing new conformational space, where each landscape results in optimal binding of DxxD (caspase-3) or VxxD (caspase-6) substrate and simultaneously disfavors binding of the other substrate. Within the context of the caspase-3 conformational landscape, substitutions near the active site result in nearly equal activity against DxxD and VxxD by disrupting a hydrogen bonding network in the substrate binding pocket. The converse substitutions in zebrafish caspase-3a result in increased selection for P4 aspartate over valine. Overall, the data show that the shift in specificity that results in a dual function protease, as in zebrafish caspase-3a, requires fewer amino acid substitutions compared with those required to access new conformational space for swapping substrate specificity, such as between caspases-3 and -6.


Assuntos
Caspase 3/metabolismo , Sequência de Aminoácidos , Animais , Ácido Aspártico/metabolismo , Caspase 3/química , Caspase 6/metabolismo , Humanos , Ligação de Hidrogênio , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Valina/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
5.
J Microbiol Biol Educ ; 18(1)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28512519

RESUMO

In contrast to the narrowing of options in academic careers, the bioscience industry offers robust employment opportunities for STEM-trained workers, especially those who display both scientific and business talent. Unfortunately, traditional science programs typically lack curricular features that develop this type of worker. The North Carolina State University Master of Microbial Biotechnology (MMB) program facilitates industry-specific experiential learning to fill this training gap. Similar programs often rely on a single industry internship to provide students relevant work experience, but completion of one internship might not suffice to position students for employment in a highly competitive job market. The MMB program requires students to complete an internship and three practicum projects in an industry setting, to promote development of key skills in a variety of areas, to build confidence in the ability to perform initial job duties, and to establish a more extensive work history in industry. In this Perspective we discuss an unmet need in undergraduate and graduate STEM education that can be filled by incorporating a similar set of industry-specific work experiences for students who desire to transition from academe into the life science industry.

6.
Protein Sci ; 25(11): 2076-2088, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27577093

RESUMO

The regulation of caspase-3 enzyme activity is a vital process in cell fate decisions leading to cell differentiation and tissue development or to apoptosis. The zebrafish, Danio rerio, has become an increasingly popular animal model to study several human diseases because of their transparent embryos, short reproductive cycles, and ease of drug administration. While apoptosis is an evolutionarily conserved process in metazoans, little is known about caspases from zebrafish, particularly regarding substrate specificity and allosteric regulation compared to the human caspases. We cloned zebrafish caspase-3a (casp3a) and examined substrate specificity of the recombinant protein, Casp3a, compared to human caspase-3 (CASP3) by utilizing M13 bacteriophage substrate libraries that incorporated either random amino acids at P5-P1' or aspartate fixed at P1. The results show a preference for the tetrapeptide sequence DNLD for both enzymes, but the P4 position of zebrafish Casp3a also accommodates valine equally well. We determined the structure of zebrafish Casp3a to 2.28Å resolution by X-ray crystallography, and when combined with molecular dynamics simulations, the results suggest that a limited number of amino acid substitutions near the active site result in plasticity of the S4 sub-site by increasing flexibility of one active site loop and by affecting hydrogen-bonding with substrate. The data show that zebrafish Casp3a exhibits a broader substrate portfolio, suggesting overlap with the functions of caspase-6 in zebrafish development.


Assuntos
Caspase 3/química , Simulação de Dinâmica Molecular , Biblioteca de Peptídeos , Peixe-Zebra , Regulação Alostérica , Animais , Cristalografia por Raios X , Especificidade por Substrato
7.
J Microbiol Biol Educ ; 14(2): 221-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358386

RESUMO

We have developed a cooperative-learning, case studies project model that has teams of students working with biotechnology professionals on company-specific problems. These semester-long, team-based projects can be used effectively to provide students with valuable skills in an industry environment and experience addressing real issues faced by biotechnology companies. Using peer-evaluations, we have seen improvement in students' professional skills such as time-management, quality of work, and level of contribution over multiple semesters. This model of team-based, industry-sponsored projects could be implemented in other college and university courses/programs to promote professional skills and expose students to an industry setting.

8.
PLoS One ; 8(8): e70715, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950987

RESUMO

To promote healing of many orthopedic injuries, tissue engineering approaches are being developed that combine growth factors such as Bone Morphogenetic Proteins (BMP) with biomaterial carriers. Although these technologies have shown great promise, they still face limitations. We describe a generalized approach to create target-specific modular peptides that bind growth factors to implantable biomaterials. These bifunctional peptide coatings provide a novel way to modulate biology on the surface of an implant. Using phage display techniques, we have identified peptides that bind with high affinity to BMP-2. The peptides that bind to BMP-2 fall into two different sequence clusters. The first cluster of peptide sequences contains the motif W-X-X-F-X-X-L (where X can be any amino acid) and the second cluster contains the motif F-P-L-K-G. We have synthesized bifunctional peptide linkers that contain BMP-2 and collagen-binding domains. Using a rat ectopic bone formation model, we have injected rhBMP-2 into a collagen matrix with or without a bifunctional BMP-2: collagen peptide (BC-1). The presence of BC-1 significantly increased osteogenic cellular activity, the area of bone formed, and bone maturity at the site of injection. Our results suggest that bifunctional peptides that can simultaneously bind to a growth factor and an implantable biomaterial can be used to control the delivery and release of growth factors at the site of implantation.


Assuntos
Materiais Biocompatíveis/química , Proteína Morfogenética Óssea 2/administração & dosagem , Proteína Morfogenética Óssea 2/farmacologia , Colágeno/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Colágeno/administração & dosagem , Colágeno/metabolismo , Injeções , Masculino , Dados de Sequência Molecular , Osteogênese/efeitos dos fármacos , Biblioteca de Peptídeos , Peptídeos/administração & dosagem , Peptídeos/metabolismo , Ligação Proteica , Ratos , Ratos Sprague-Dawley
9.
J Microbiol Biol Educ ; 13(1): 39-44, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23653780

RESUMO

The biotechnology industry has a need for business-savvy scientists; however, this is not the way scientists are traditionally trained at universities and colleges. To address this need, universities have developed Professional Science Master's (PSM) degree programs that offer advanced training in a technical field along with professional skills development through team-based projects and internships. Nearly ten years ago, the Department of Microbiology at NCSU started a PSM program in Microbial Biotechnology (MMB). This article provides an overview of the MMB program, and shares some of the lessons that we have learned.

10.
Antimicrob Agents Chemother ; 47(9): 2875-81, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12936988

RESUMO

We describe a "protein knockout" technique that can be used to identify essential proteins in bacteria. This technique uses phage display to select peptides that bind specifically to purified target proteins. The peptides are expressed intracellularly and cause inhibition of growth when the protein is essential. In this study, peptides that each specifically bind to one of seven essential proteins were identified by phage display and then expressed as fusions to glutathione S-transferase in Escherichia coli. Expression of peptide fusions directed against E. coli DnaN, LpxA, RpoD, ProRS, SecA, GyrA, and Era each dramatically inhibited cell growth. Under the same conditions, a fusion with a randomized peptide sequence did not inhibit cell growth. In growth-inhibited cells, inhibition could be relieved by concurrent overexpression of the relevant target protein but not by coexpression of an irrelevant protein, indicating that growth inhibition was due to a specific interaction of the expressed peptide with its target. The protein knockout technique can be used to assess the essentiality of genes of unknown function emerging from the sequencing of microbial genomes. This technique can also be used to validate proteins as drug targets, and their corresponding peptides as screening tools, for discovery of new antimicrobial agents.


Assuntos
Proteínas de Bactérias/fisiologia , Peptídeos/metabolismo , Proteínas de Bactérias/genética , Western Blotting , Meios de Cultura , Replicação do DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/biossíntese , DNA Super-Helicoidal/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Vetores Genéticos , Biblioteca de Peptídeos , Plasmídeos/genética , Biossíntese de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA