Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(9): 1985-1987, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37703828

RESUMO

PLCγ2 is genetically linked to Alzheimer's disease (AD), but it is unclear how PLCγ2 contributes to pathology. Tsai et al. demonstrate that AD-associated PLCG2 variants bidirectionally orchestrate microglial responses to plaques and impact neural function in an AD mouse model. This positions PLCγ2 as a key microglial signaling node and shows that targeting PLCγ2 could have therapeutic benefits in AD.


Assuntos
Microglia , Placa Amiloide , Animais , Camundongos , Fosfolipase C gama/genética , Modelos Animais de Doenças
2.
Annu Rev Cell Dev Biol ; 34: 523-544, 2018 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-30089221

RESUMO

An explosion of findings driven by powerful new technologies has expanded our understanding of microglia, the resident immune cells of the central nervous system (CNS). This wave of discoveries has fueled a growing interest in the roles that these cells play in the development of the CNS and in the neuropathology of a diverse array of disorders. In this review, we discuss the crucial roles that microglia play in shaping the brain-from their influence on neurons and glia within the developing CNS to their roles in synaptic maturation and brain wiring-as well as some of the obstacles to overcome when assessing their contributions to normal brain development. Furthermore, we examine how normal developmental functions of microglia are perturbed or remerge in neurodevelopmental and neurodegenerative disease.


Assuntos
Encéfalo/crescimento & desenvolvimento , Sistema Nervoso Central/crescimento & desenvolvimento , Microglia/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Humanos , Microglia/patologia , Doenças Neurodegenerativas , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/patologia , Transdução de Sinais/genética
3.
Immunity ; 50(4): 955-974, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995509

RESUMO

Neurodegenerative diseases of the central nervous system progressively rob patients of their memory, motor function, and ability to perform daily tasks. Advances in genetics and animal models are beginning to unearth an unexpected role of the immune system in disease onset and pathogenesis; however, the role of cytokines, growth factors, and other immune signaling pathways in disease pathogenesis is still being examined. Here we review recent genetic risk and genome-wide association studies and emerging mechanisms for three key immune pathways implicated in disease, the growth factor TGF-ß, the complement cascade, and the extracellular receptor TREM2. These immune signaling pathways are important under both healthy and neurodegenerative conditions, and recent work has highlighted new functional aspects of their signaling. Finally, we assess future directions for immune-related research in neurodegeneration and potential avenues for immune-related therapies.


Assuntos
Doenças Neurodegenerativas/imunologia , Transdução de Sinais/imunologia , Envelhecimento/imunologia , Animais , Ativação do Complemento , Progressão da Doença , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Gliose/imunologia , Gliose/patologia , Humanos , Imunidade Inata , Inflamação/imunologia , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microglia/imunologia , Modelos Imunológicos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Agregação Patológica de Proteínas/imunologia , Receptores Imunológicos/imunologia , Fator de Crescimento Transformador beta/imunologia
4.
Immunity ; 50(1): 253-271.e6, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30471926

RESUMO

Microglia, the resident immune cells of the brain, rapidly change states in response to their environment, but we lack molecular and functional signatures of different microglial populations. Here, we analyzed the RNA expression patterns of more than 76,000 individual microglia in mice during development, in old age, and after brain injury. Our analysis uncovered at least nine transcriptionally distinct microglial states, which expressed unique sets of genes and were localized in the brain using specific markers. The greatest microglial heterogeneity was found at young ages; however, several states-including chemokine-enriched inflammatory microglia-persisted throughout the lifespan or increased in the aged brain. Multiple reactive microglial subtypes were also found following demyelinating injury in mice, at least one of which was also found in human multiple sclerosis lesions. These distinct microglia signatures can be used to better understand microglia function and to identify and manipulate specific subpopulations in health and disease.


Assuntos
Envelhecimento/imunologia , Lesões Encefálicas/imunologia , Encéfalo/fisiologia , Microglia/fisiologia , Esclerose Múltipla/imunologia , Adaptação Fisiológica , Envelhecimento/genética , Animais , Lesões Encefálicas/genética , Diferenciação Celular , Doenças Desmielinizantes , Humanos , Longevidade , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Análise de Célula Única
6.
Nature ; 530(7589): 177-83, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26814963

RESUMO

Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia's strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C4A. Human C4 protein localized to neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals with schizophrenia.


Assuntos
Complemento C4/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Esquizofrenia/genética , Alelos , Sequência de Aminoácidos , Animais , Axônios/metabolismo , Sequência de Bases , Encéfalo/metabolismo , Encéfalo/patologia , Complemento C4/química , Via Clássica do Complemento , Dendritos/metabolismo , Dosagem de Genes/genética , Regulação da Expressão Gênica/genética , Haplótipos/genética , Humanos , Complexo Principal de Histocompatibilidade/genética , Camundongos , Modelos Animais , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Fatores de Risco , Esquizofrenia/patologia , Sinapses/metabolismo
7.
Nature ; 506(7487): 230-4, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24390343

RESUMO

There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.


Assuntos
Lesões Encefálicas/congênito , Lesões Encefálicas/tratamento farmacológico , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/uso terapêutico , Oligodendroglia/efeitos dos fármacos , Administração Intranasal , Animais , Animais Recém-Nascidos , Lesões Encefálicas/patologia , Lesões Encefálicas/prevenção & controle , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doenças Desmielinizantes/congênito , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/prevenção & controle , Modelos Animais de Doenças , Fator de Crescimento Epidérmico/administração & dosagem , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Hipóxia/patologia , Hipóxia/fisiopatologia , Doenças do Prematuro/tratamento farmacológico , Doenças do Prematuro/metabolismo , Doenças do Prematuro/patologia , Masculino , Camundongos , Terapia de Alvo Molecular , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Fatores de Tempo
8.
Drug Metab Dispos ; 46(6): 908-912, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29559442

RESUMO

While simple O- (ether-linked) and N-glucuronide drug conjugates generally are unreactive and considered benign from a safety perspective, the acyl glucuronides that derive from metabolism of carboxylic acid-containing xenobiotics can exhibit a degree of chemical reactivity that is dependent upon their molecular structure. As a result, concerns have arisen over the safety of acyl glucuronides as a class, several members of which have been implicated in the toxicity of their respective parent drugs. However, direct evidence in support of these claims remains sparse, and due to frequently encountered species differences in the systemic exposure to acyl glucuronides (both of the parent drug and oxidized derivatives thereof), coupled with their instability in aqueous media and potential to undergo chemical rearrangement (acyl migration), qualification of these conjugates by traditional safety assessment methods can be very challenging. In this Commentary, we discuss alternative (non-acyl glucuronide) mechanisms by which carboxylic acids may cause serious adverse reactions, and propose a novel, practical approach to compare systemic exposure to acyl glucuronide metabolites in humans to that in animal species used in preclinical safety assessment based on relative estimates of the total body burden of these circulating conjugates.


Assuntos
Glucuronídeos/metabolismo , Acilação/fisiologia , Animais , Ácidos Carboxílicos/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Oxirredução , Xenobióticos/metabolismo
9.
Int J Mol Sci ; 19(12)2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30567358

RESUMO

Understanding genome wide, tissue-specific, and spaceflight-induced changes in gene expression is critical to develop effective countermeasures. Transcriptome analysis has been performed on diverse tissues harvested from animals flown in space, but not the kidney. We determined the genome wide gene expression using a gene array analysis of kidney and liver tissue from mice flown in space for 12 days versus ground based control animals. By comparing the transcriptome of liver and kidney from animals flown in space versus ground control animals, we tested a unique hypothesis: Are there common gene expression pathways activated in multiple tissue types in response to spaceflight stimuli? Although there were tissue-specific changes, both liver and kidney overexpressed genes in the same four areas: (a) cellular responses to peptides, hormones, and nitrogen/organonitrogen compounds; (b) apoptosis and cell death; (c) fat cell differentiation and (d) negative regulation of protein kinase.


Assuntos
Regulação da Expressão Gênica/genética , Genoma/genética , Voo Espacial , Ausência de Peso/efeitos adversos , Animais , Apoptose/genética , Redes Reguladoras de Genes/genética , Rim/metabolismo , Fígado/metabolismo , Camundongos , Especificidade de Órgãos
10.
Microgravity Sci Technol ; 30(3): 195-208, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31258252

RESUMO

Baker's yeast (Saccharomyces cerevisiae) has broad genetic homology to human cells. Although typically grown as 1-2mm diameter colonies under certain conditions yeast can form very large (10 + mm in diameter) or 'giant' colonies on agar. Giant yeast colonies have been used to study diverse biomedical processes such as cell survival, aging, and the response to cancer pharmacogenomics. Such colonies evolve dynamically into complex stratified structures that respond differentially to environmental cues. Ammonia production, gravity driven ammonia convection, and shear defense responses are key differentiation signals for cell death and reactive oxygen system pathways in these colonies. The response to these signals can be modulated by experimental interventions such as agar composition, gene deletion and application of pharmaceuticals. In this study we used physical factors including colony rotation and microgravity to modify ammonia convection and shear stress as environmental cues and observed differences in the responses of both ammonia dependent and stress response dependent pathways We found that the effects of random positioning are distinct from rotation. Furthermore, both true and simulated microgravity exacerbated both cellular redox responses and apoptosis. These changes were largely shear-response dependent but each model had a unique response signature as measured by shear stress genes and the promoter set which regulates them These physical techniques permitted a graded manipulation of both convection and ammonia signaling and are primed to substantially contribute to our understanding of the mechanisms of drug action, cell aging, and colony differentiation.

11.
Pharm Res ; 33(7): 1545-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27183841

RESUMO

Even the finest state-of-the art preclinical drug testing, usually in primary hepatocytes, remains an imperfect science. Drugs continue to be withdrawn from the market due to unforeseen toxicity, side effects, and drug interactions. The space program may be able to provide a lifeline. Best known for rockets, space shuttles, astronauts and engineering, the space program has also delivered some serious medical science. Optimized suspension culture in NASA's specialized suspension culture devices, known as rotating wall vessels, uniquely maintains Phase I and Phase II drug metabolizing pathways in hepatocytes for weeks in cell culture. Previously prohibitively expensive, new materials and 3D printing techniques have the potential to make the NASA rotating wall vessel available inexpensively on an industrial scale. Here we address the tradeoffs inherent in the rotating wall vessel, limitations of alternative approaches for drug metabolism studies, and the market to be addressed. Better pre-clinical drug testing has the potential to significantly reduce the morbidity and mortality of one of the most common problems in modern medicine: adverse events related to pharmaceuticals.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Tecnologia Farmacêutica/métodos , Testes de Toxicidade/métodos , Animais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hepatócitos/efeitos dos fármacos , Humanos , Impressão Tridimensional , Voo Espacial
12.
Mutagenesis ; 30(4): 459-62, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25852088

RESUMO

Nitrous oxide (N2O) has been widely used as a dental and surgical anaesthetic for over 150 years. However, results from a recent study suggested that increased DNA damage was seen in lymphocytes from surgical patients and this led to its continued clinical use to be questioned. The data can be challenged on technical grounds and must be considered with other studies in order to assess any possible risk. There are other studies indicating that N2O has weak genotoxicity in man, but these are confused by exposure of the populations to other anaesthetic gases including isoflurane and sevoflurane, both of which have also been reported to increase DNA damage. It should be noted that the suggested genotoxic mechanisms are all indirect, including folate deficiency, oxidative stress and homocysteine toxicity. Further, results from in vitro studies indicate that N2O has no direct DNA reactivity as negative results were obtained in a bacterial mutation (Ames) test and an assay for mutation at the hprt locus in Chinese hamster lung cells. Although not performed to definitive study designs, no evidence of carcinogenicity was seen in two long-term tests in mice and another in rats. Although there is some evidence that N2O is weakly genotoxic in humans, this appears to be similar to that reported for isoflurane and sevoflurane and all the postulated mechanisms have clear thresholds with no evidence of direct DNA reactivity. Because any potential genotoxic mechanism would have a threshold, it seems reasonable to conclude that neither occasional high exposure to patients as an anaesthetic nor low-level exposure to staff within published recommended exposure limits presents any significant carcinogenic risk.


Assuntos
Carcinógenos , Dano ao DNA/genética , Óxido Nitroso/efeitos adversos , Exposição Ocupacional/efeitos adversos , Estresse Oxidativo , Animais , Cricetinae , Humanos , Masculino , Camundongos , Ratos
13.
HGG Adv ; 5(3): 100317, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851890

RESUMO

Chronic inflammatory demyelinating polyneuropathy (CIDP) is a rare, immune-mediated disorder in which an aberrant immune response causes demyelination and axonal damage of the peripheral nerves. Genetic contribution to CIDP is unclear and no genome-wide association study (GWAS) has been reported so far. In this study, we aimed to identify CIDP-related risk loci, genes, and pathways. We first focused on CIDP, and 516 CIDP cases and 403,545 controls were included in the GWAS analysis. We also investigated genetic risk for inflammatory polyneuropathy (IP), in which we performed a GWAS study using FinnGen data and combined the results with GWAS from the UK Biobank using a fixed-effect meta-analysis. A total of 1,261 IP cases and 823,730 controls were included in the analysis. Stratified analyses by gender were performed. Mendelian randomization (MR), colocalization, and transcriptome-wide association study (TWAS) analyses were performed to identify associated genes. Gene-set analyses were conducted to identify associated pathways. We identified one genome-wide significant locus at 20q13.33 for CIDP risk among women, the top variant located at the intron region of gene CDH4. Sex-combined MR, colocalization, and TWAS analyses identified three candidate pathogenic genes for CIDP and five genes for IP. MAGMA gene-set analyses identified a total of 18 pathways related to IP or CIDP. Sex-stratified analyses identified three genes for IP among males and two genes for IP among females. Our study identified suggestive risk genes and pathways for CIDP and IP. Functional analyses should be conducted to further confirm these associations.

14.
Trends Pharmacol Sci ; 44(10): 674-688, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37657967

RESUMO

Iron accumulation has been associated with the etiology and progression of multiple neurodegenerative diseases (NDDs). The exact role of iron in these diseases is not fully understood, but an iron-dependent form of regulated cell death called ferroptosis could be key. Although there is substantial preclinical and clinical evidence that ferroptosis plays a role in NDD, there are still questions regarding how to target ferroptosis therapeutically, including which proteins to target, identification of clinically relevant biomarkers, and which patients might benefit most. Clinical trials of iron- and ferroptosis-targeted therapies are beginning to provide some answers, but there is growing interest in developing new ferroptosis inhibitors. We describe newly identified ferroptosis targets, opportunities, and challenges in NDD, as well as key considerations for progressing new therapeutics to the clinic.


Assuntos
Ferroptose , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Ferro
15.
Nat Neurosci ; 26(1): 12-26, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36536241

RESUMO

Iron dysregulation has been implicated in multiple neurodegenerative diseases, including Parkinson's disease (PD). Iron-loaded microglia are frequently found in affected brain regions, but how iron accumulation influences microglia physiology and contributes to neurodegeneration is poorly understood. Here we show that human induced pluripotent stem cell-derived microglia grown in a tri-culture system are highly responsive to iron and susceptible to ferroptosis, an iron-dependent form of cell death. Furthermore, iron overload causes a marked shift in the microglial transcriptional state that overlaps with a transcriptomic signature found in PD postmortem brain microglia. Our data also show that this microglial response contributes to neurodegeneration, as removal of microglia from the tri-culture system substantially delayed iron-induced neurotoxicity. To elucidate the mechanisms regulating iron response in microglia, we performed a genome-wide CRISPR screen and identified novel regulators of ferroptosis, including the vesicle trafficking gene SEC24B. These data suggest a critical role for microglia iron overload and ferroptosis in neurodegeneration.


Assuntos
Ferroptose , Células-Tronco Pluripotentes Induzidas , Sobrecarga de Ferro , Doença de Parkinson , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Microglia/metabolismo , Doença de Parkinson/genética
16.
Neurotherapeutics ; 19(3): 864-873, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35378684

RESUMO

Chronic inflammatory demyelinating polyneuropathy (CIDP) is the most common, heterogeneous, immune-mediated neuropathy, characterized by predominant demyelination of motor and sensory nerves. CIDP follows a relapsing-remitting or a progressive course and causes substantial disability. The pathogenesis of CIDP involves a complex interplay of multiple aberrant immune responses, creating a pro-inflammatory environment, subsequently inflicting damage on the myelin sheath. Though the exact triggers are unclear, diverse immune mechanisms encompassing cellular and humoral pathways are implicated. The complement system appears to play a role in promoting macrophage-mediated demyelination. Complement deposition in sural nerve biopsies, as well as signs of increased complement activation in serum and CSF of patients with CIDP, suggest complement involvement in CIDP pathogenesis. Here, we present a comprehensive overview of the preclinical and clinical evidence supporting the potential role of the complement system in CIDP. This understanding furnishes a strong rationale for targeting the complement system to develop new therapies that could serve the unmet needs of patients affected by CIDP, particularly in those refractory to standard therapies.


Assuntos
Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Biópsia , Humanos , Macrófagos/patologia , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/diagnóstico , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/tratamento farmacológico
17.
Nat Neurosci ; 25(3): 306-316, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35260865

RESUMO

A key aspect of nearly all single-cell sequencing experiments is dissociation of intact tissues into single-cell suspensions. While many protocols have been optimized for optimal cell yield, they have often overlooked the effects that dissociation can have on ex vivo gene expression. Here, we demonstrate that use of enzymatic dissociation on brain tissue induces an aberrant ex vivo gene expression signature, most prominently in microglia, which is prevalent in published literature and can substantially confound downstream analyses. To address this issue, we present a rigorously validated protocol that preserves both in vivo transcriptional profiles and cell-type diversity and yield across tissue types and species. We also identify a similar signature in postmortem human brain single-nucleus RNA-sequencing datasets, and show that this signature is induced in freshly isolated human tissue by exposure to elevated temperatures ex vivo. Together, our results provide a methodological solution for preventing artifactual gene expression changes during fresh tissue digestion and a reference for future deeper analysis of the potential confounding states present in postmortem human samples.


Assuntos
Neuroglia , Transcriptoma , Encéfalo , Humanos , Microglia/metabolismo , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
18.
Adv Ther (Weinh) ; 5(6)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36211621

RESUMO

Chronic autoimmune demyelinating neuropathies are a group of rare neuromuscular disorders with complex, poorly characterized etiology. Here we describe a phenotypic, human-on-a-chip (HoaC) electrical conduction model of two rare autoimmune demyelinating neuropathies, chronic inflammatory demyelinating polyneuropathy (CIDP) and multifocal motor neuropathy (MMN), and explore the efficacy of TNT005, a monoclonal antibody inhibitor of the classical complement pathway. Patient sera was shown to contain anti-GM1 IgM and IgG antibodies capable of binding to human primary Schwann cells and induced pluripotent stem cell derived motoneurons. Patient autoantibody binding was sufficient to activate the classical complement pathway resulting in detection of C3b and C5b-9 deposits. A HoaC model, using a microelectrode array with directed axonal outgrowth over the electrodes treated with patient sera, exhibited reductions in motoneuron action potential frequency and conduction velocity. TNT005 rescued the serum-induced complement deposition and functional deficits while treatment with an isotype control antibody had no rescue effect. These data indicate that complement activation by CIDP and MMN patient serum is sufficient to mimic neurophysiological features of each disease and that complement inhibition with TNT005 was sufficient to rescue these pathological effects and provide efficacy data included in an investigational new drug application, demonstrating the model's translational potential.

19.
J Neurosci ; 30(9): 3239-53, 2010 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-20203183

RESUMO

The rate of synaptic transmission between photoreceptors and bipolar cells has been long known to depend on conditions of ambient illumination. However, the molecular mechanisms that mediate and regulate transmission at this ribbon synapse are poorly understood. We conducted electroretinographic recordings from dark- and light-adapted mice lacking the abundant photoreceptor-specific protein phosducin and found that the ON-bipolar cell responses in these animals have a reduced light sensitivity in the dark-adapted state. Additional desensitization of their responses, normally caused by steady background illumination, was also diminished compared with wild-type animals. This effect was observed in both rod- and cone-driven pathways, with the latter affected to a larger degree. The underlying mechanism is likely to be photoreceptor specific because phosducin is not expressed in other retina neurons and transgenic expression of phosducin in rods of phosducin knock-out mice rescued the rod-specific phenotype. The underlying mechanism functions downstream from the phototransduction cascade, as evident from the sensitivity of phototransduction in phosducin knock-out rods being affected to a much lesser degree than b-wave responses. These data indicate that a major regulatory component responsible for setting the sensitivity of signal transmission between photoreceptors and ON-bipolar cells is confined to photoreceptors and that phosducin participates in the underlying molecular mechanism.


Assuntos
Proteínas do Olho/genética , Reguladores de Proteínas de Ligação ao GTP/genética , Fosfoproteínas/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Células Bipolares da Retina/metabolismo , Transmissão Sináptica/genética , Visão Ocular/genética , Vias Visuais/metabolismo , Adaptação Ocular/genética , Adaptação Ocular/efeitos da radiação , Animais , Adaptação à Escuridão/genética , Adaptação à Escuridão/efeitos da radiação , Eletrorretinografia , Proteínas do Olho/metabolismo , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/fisiologia , Luz , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fosfoproteínas/metabolismo , Estimulação Luminosa , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Células Bipolares da Retina/citologia , Células Bipolares da Retina/efeitos da radiação , Sinapses/genética , Sinapses/metabolismo , Sinapses/ultraestrutura , Transmissão Sináptica/efeitos da radiação , Visão Ocular/efeitos da radiação , Vias Visuais/citologia , Vias Visuais/efeitos da radiação
20.
J Toxicol ; 2021: 6643324, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33976696

RESUMO

Drug-induced nephrotoxicity causes huge morbidity and mortality at massive financial cost. The greatest burden of drug-induced acute kidney injury falls on the proximal tubular cells. To maintain their structure and function, renal proximal tubular cells need the shear stress from tubular fluid flow. Diverse techniques to reintroduce shear stress have been studied in a variety of proximal tubular like cell culture models. These studies often have limited replicates because of the huge cost of equipment and do not report all relevant parameters to allow reproduction and comparison of studies between labs. This review codifies the techniques used to reintroduce shear stress, the cell lines utilized, and the biological outcomes reported. Further, we propose a set of interventions to enhance future cell biology understanding of nephrotoxicity using cell culture models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA