Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255877

RESUMO

The modulation of K+ channels plays a crucial role in cell migration and proliferation, but the effect of K+ channels on human cutaneous wound healing (CWH) remains underexplored. This study aimed to determine the necessity of modulating K+ channel activity and expression for human CWH. The use of 25 mM KCl as a K+ channel blocker markedly improved wound healing in vitro (in keratinocytes and fibroblasts) and in vivo (in rat and porcine models). K+ channel blockers, such as quinine and tetraethylammonium, aided in vitro wound healing, while Ba2+ was the exception and did not show similar effects. Single-channel recordings revealed that the Ba2+-insensitive large conductance Ca2+-activated K+ (BKCa) channel was predominantly present in human keratinocytes. NS1619, an opener of the BKCa channel, hindered wound healing processes like proliferation, migration, and filopodia formation. Conversely, charybdotoxin and iberiotoxin, which are BKCa channel blockers, dramatically enhanced these processes. The downregulation of BKCa also improved CWH, whereas its overexpression impeded these healing processes. These findings underscore the facilitative effect of BKCa channel suppression on CWH, proposing BKCa channels as potential molecular targets for enhancing human cutaneous wound healing.


Assuntos
Fibroblastos , Hidrolases , Humanos , Animais , Ratos , Suínos , Movimento Celular , Regulação para Baixo , Canais de Potássio Ativados por Cálcio de Condutância Alta , Cicatrização
2.
Molecules ; 29(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39064840

RESUMO

Dynamic bonds can facilitate reversible formation and dissociation of connections in response to external stimuli, endowing materials with shape memory and self-healing capabilities. Temperature is an external stimulus that can be easily controlled through heat. Dynamic covalent bonds in response to temperature can reversibly connect, exchange, and convert chains in the polymer. In this review, we introduce dynamic covalent bonds that operate without catalysts in various temperature ranges. The basic bonding mechanism and the kinetics are examined to understand dynamic covalent chemistry reversibly performed by equilibrium control. Furthermore, a recent synthesis method that implements dynamic covalent coupling based on various polymers is introduced. Dynamic covalent bonds that operate depending on temperature can be applied and expand the use of polymers, providing predictions for the development of future smart materials.

3.
Mar Drugs ; 19(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34822485

RESUMO

Models created by the intraperitoneal injection of lipopolysaccharide (LPS) and D-galactosamine (D-GalN) have been widely used to study the pathogenesis of human acute liver failure (ALF) and drug development. Our previous study reported that oyster (Crassostrea gigas) hydrolysate (OH) had a hepatoprotective effect in LPS/D-GalN-injected mice. This study was performed to identify the hepatoprotective effect of the tyrosine-alanine (YA) peptide, the main component of OH, in a LPS/D-GalN-injected ALF mice model. We analyzed the effect of YA on previously known mechanisms of hepatocellular injury in the model. LPS/D-GalN-injected mice showed inflammatory, apoptotic, ferroptotic, and pyroptotic liver injury. The pre-administration of YA (10 mg/kg or 50 mg/kg) significantly reduced the liver damage factors. The hepatoprotective effect of YA was higher in the 50 mg/kg YA pre-administered group than in the 10 mg/kg YA pre-administered group. These results showed that YA had a hepatoprotective effect by reducing inflammation, apoptosis, ferroptosis, and pyroptosis in the LPS/D-GalN-injected ALF mouse model. We suggest that YA can be used as a functional peptide for the prevention of acute liver injury.


Assuntos
Anti-Inflamatórios/farmacologia , Ostreidae , Peptídeos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Organismos Aquáticos , Modelos Animais de Doenças , Galactosamina , Lipopolissacarídeos , Falência Hepática Aguda/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/química , Peptídeos/uso terapêutico , Piroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Nano Lett ; 20(2): 812-819, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31670525

RESUMO

Nanolenses of alkali metal halides can be a unique optical element due to their hygroscopicity, optical transparency, and high mobility of constituent ions. It has been challenging, however, to form and place such lenses in a controlled manner. Here, we report micro/nanolenses of various alkali metal halides arranged as a one-dimensional (1D) array, using the exterior of single-walled carbon nanotubes (SWNTs) as a template for forming the lenses. Applying an electrical bias to an aqueous solution of alkali metal halides placed at the end of an SWNT array causes ionic transport along the exterior of SWNTs and the subsequent formation of salt micro/nanocrystals. The crystals serve as micro/nanolenses that optically visualize individual SWNTs and amplify their Raman scattering by orders of magnitude. Molecules dissolved in the ionic solution can be electrokinetically transported along the nanotubes, captured within the lenses, and analyzed by Raman spectroscopy, which we demonstrate by detecting ∼12 attomoles of glucose and 2 femtomoles of urea. The hygroscopic salt nanolenses are robust under various ambient conditions indefinitely, by transitioning to liquid droplets above their deliquescence relative humidity, yet can be removed nondestructively by water. Our approach could have broad implications in the optical visualization of 1D nanostructures, molecular transport or chemical reactions in 1D space, and molecular spectroscopy in salty environments.

5.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502229

RESUMO

The two-pore domain K+ (K2P) channel, which is involved in setting the resting membrane potential in neurons, is an essential target for receptor agonists. Activation of the γ-aminobutyric acid (GABA) receptors (GABAAR and GABABR) reduces cellular excitability through Cl- influx and K+ efflux in neurons. Relatively little is known about the link between GABAAR and the K+ channel. The present study was performed to identify the effect of GABAR agonists on K2P channel expression and activity in the neuroblastic B35 cells that maintain glutamic acid decarboxylase (GAD) activity and express GABA. TASK and TREK/TRAAK mRNA were expressed in B35 cells with a high level of TREK-2 and TRAAK. In addition, TREK/TRAAK proteins were detected in the GABAergic neurons obtained from GABA transgenic mice. Furthermore, TREK-2 mRNA and protein expression levels were markedly upregulated in B35 cells by GABAAR and GABABR agonists. In particular, muscimol, a GABAAR agonist, significantly increased TREK-2 expression and activity, but the effect was reduced in the presence of the GABAAR antagonist bicuculine or TREK-2 inhibitor norfluoxetine. In the whole-cell and single-channel patch configurations, muscimol increased TREK-2 activity, but the muscimol effect disappeared in the N-terminal deletion mutant. These results indicate that muscimol directly induces TREK-2 activation through the N-terminus and suggest that muscimol can reduce cellular excitability by activating the TREK-2 channel and by inducing Cl- influx in GABAergic neurons.


Assuntos
Agonistas de Receptores de GABA-A/farmacologia , Neurônios GABAérgicos/metabolismo , Potenciais da Membrana , Muscimol/farmacologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Receptores de GABA/química , Animais , Células Cultivadas , Neurônios GABAérgicos/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Camundongos , Canais de Potássio de Domínios Poros em Tandem/genética , Ratos
6.
Mar Drugs ; 18(10)2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050644

RESUMO

Accumulative alcohol hangovers cause liver damage through oxidative and inflammatory stress. Numerous antioxidant and anti-inflammatory reagents have been developed to reduce alcohol hangovers, but these reagents are still insignificant and have limitations in that they can cause liver toxicity. Oyster hydrolysate (OH), another reagent that has antioxidant and anti-inflammatory activity, is a product extracted through an enzymatic hydrolysis process from oysters (Crassostrea gigas), which can be easily eaten in meals. This study was aimed at determining the effects of OH on alcohol metabolism, using a single high dose of ethanol (EtOH) administered to rodents, by monitoring alcohol metabolic enzymes, oxidative stress signals, and inflammatory mediators. The effect of tyrosine-alanine (YA) peptide, a main component of OH, on EtOH metabolism was also identified. In vitro experiments showed that OH pretreatment inhibited EtOH-induced cell death, oxidative stress, and inflammation in liver cells and macrophages. In vivo experiments showed that OH and YA pre-administration increased alcohol dehydrogenase, aldehyde dehydrogenase, and catalase activity in EtOH binge treatment. In addition, OH pre-administration alleviated CYP2E1 activity, ROS production, apoptotic signals, and inflammatory mediators in liver tissues. These results showed that OH and YA enhanced EtOH metabolism and had a protective effect against acute alcohol liver damage. Our findings offer new insights into a single high dose of EtOH drinking and suggest that OH and YA could be used as potential marine functional foods to prevent acute alcohol-induced liver damage.


Assuntos
Crassostrea/química , Dipeptídeos/farmacologia , Etanol/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Animais , Dipeptídeos/química , Etanol/administração & dosagem , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hidrólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley
7.
Int J Mol Sci ; 21(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256222

RESUMO

TWIK (tandem-pore domain weak inward rectifying K+)-related spinal cord K+ channel (TRESK), a member of the two-pore domain K+ channel family, is abundantly expressed in dorsal root ganglion (DRG) neurons. It is well documented that TRESK expression is changed in several models of peripheral nerve injury, resulting in a shift in sensory neuron excitability. However, the role of TRESK in the model of spinal cord injury (SCI) has not been fully understood. This study investigates the role of TRESK in a thoracic spinal cord contusion model, and in transgenic mice overexpressed with the TRESK gene (TGTRESK). Immunostaining analysis showed that TRESK was expressed in the dorsal and ventral neurons of the spinal cord. The TRESK expression was increased by SCI in both dorsal and ventral neurons. TRESK mRNA expression was upregulated in the spinal cord and DRG isolated from the ninth thoracic (T9) spinal cord contusion rats. The expression was significantly upregulated in the spinal cord below the injury site at acute time points (6, 24, and 48 h) after SCI (p < 0.05). In addition, TRESK expression was markedly increased in DRGs below and adjacent to the injury site. TRESK was expressed in inflammatory cells. In addition, the number and fluorescence intensity of TRESK-positive neurons increased in the dorsal and ventral horns of the spinal cord after SCI. TGTRESK SCI mice showed faster paralysis recovery and higher mechanical threshold compared to wild-type (WT)-SCI mice. TGTRESK mice showed lower TNF-α concentrations in the blood than WT mice. In addition, IL-1ß concentration and apoptotic signals in the caudal spinal cord and DRG were significantly decreased in TGTRESK SCI mice compared to WT-SCI mice (p < 0.05). These results indicate that TRESK upregulated following SCI contributes to the recovery of paralysis and mechanical pain threshold by suppressing the excitability of motor and sensory neurons and inflammatory and apoptotic processes.


Assuntos
Neurônios Motores/patologia , Canais de Potássio/genética , Recuperação de Função Fisiológica , Células Receptoras Sensoriais/patologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/fisiopatologia , Regulação para Cima/genética , Animais , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Camundongos Endogâmicos C57BL , Neurônios Motores/metabolismo , Canais de Potássio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo
8.
Pflugers Arch ; 470(10): 1449-1458, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29931651

RESUMO

Transient receptor-potential, cation channel, subfamily M, member 4 (TRPM4) channels regulate a variety of physiological and pathological processes; however, their roles as functional channels under diverse conditions remain unclear. In this study, cytosolic protein tyrosine phosphatase non-receptor type 6 (PTPN6) interacted with TRPM4 channels. We confirmed their interaction by performing co-immunoprecipitation (Co-IP) assays following heterologous PTPN6 and TRPM4 channel expression in HEK293 cells. Furthermore, biomolecular fluorescence complementation (BiFC) image analysis confirmed TRPM4-PTPN6 binding. In addition, immunoblotting and Co-IP analyses revealed that TRPM4 expression significantly decreased in the membrane fraction of cells after PTPN6 was silenced with a specific short-hairpin RNA (shRNA-PTPN6). In agreement, TRPM4-induced changes in whole-cell currents were not detected in PTPN6-silenced HEK cells, in contrast to cells transfected with a scrambled RNA (scRNA) or in naïve HEK cells. These data suggest that PTPN6 inhibits TRPM4 channel activity by disrupting TRPM4 expression. Furthermore, TRPM4 channels were expressed in the membrane of naïve cells and scRNA transfectants, but not in those of PTPN6-silenced cells. These results indicated that PTPN6 is critically associated with TRPM4 trafficking. This role of PTPN6 in TRPM4 membrane localization was also demonstrated in HeLa cells. TRPM4 overexpression significantly enhanced cell proliferation in untreated HeLa cells, but not in HeLa cells with silenced PTPN6 expression. These findings indicate that PTPN6-dependent TRPM4 expression and trafficking to the plasma membrane is critical for cell proliferation in both HEK293 and HeLa cells. Therefore, PTPN6 is a novel therapeutic target for treating pathologic diseases involving TRPM4.


Assuntos
Membrana Celular/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Canais de Cátion TRPM/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligação Proteica , Transporte Proteico
9.
J Nanosci Nanotechnol ; 18(9): 6257-6264, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677777

RESUMO

As direct formation of p-type two-dimensional transition metal dichalcogenides (TMDC) films on substrates, tungsten disulfide (WS2) thin films were deposited onto sapphire glass substrate through shadow mask patterns by radio-frequency (RF) sputtering at different sputtering powers ranging from 60 W to 150 W and annealed by rapid thermal processing (RTP) at various high temperatures ranging from 500 °C to 800 °C. Based on scanning electron microscope (SEM) images and Raman spectra, better surface roughness and mode dominant E12g and A1g peaks were found for WS2 thin films prepared at higher RF sputtering powers. It was also possible to obtain high mobilities and carrier densities for all WS2 thin films based on results of Hall measurements. Process conditions for these WS2 thin films on sapphire substrate were optimized to low RF sputtering power and high temperature annealing.

10.
J Nanosci Nanotechnol ; 18(9): 6265-6269, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677778

RESUMO

In this work, the UV-Vis-NIR absorption spectrum of liquid-phase exfoliated two-dimensional (2D) MoS2 nanosheets, revealed two prominent peaks at 608 nm (2.04 eV) and 668 nm (1.86 eV). These peaks were blue-shifted compared to the reported literature values and are attributed to the quantum confinement effect. Interestingly, the WS2 nanosheets exhibited the same characteristic absorption peak at ~624 nm (1.99 eV). Raman spectroscopy analysis revealed that both nanosheets displayed distinctive peaks [377.8 cm-1 and 405.6 cm-1 for MoS2, 348.3 cm-1 and 417.9 cm-1 for WS2] that originate from optical phonon modes (E12g and A1g). These peaks are shifted toward higher wavenumbers (i.e., blue-shift or phonon-stiffening) compared to bulk MoS2 and WS2, probably due to enhanced Stokes Raman scattering. Subsequently, surface functionalization of the nanosheets with 2-Mercaptoethanol was successfully performed and confirmed using optical characterization techniques, including FT-IR spectroscopy. In addition, we determined the spectral broadening after functionalization, which would be attributed to photon confinement of the nano-sized layer structure, or to inhomogeneous broadening.

11.
Int J Mol Sci ; 19(7)2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973548

RESUMO

Tandem pore domain weak inward rectifier potassium channel (TWIK)-related spinal cord K⁺ (TRESK; K2P18.1) channel is the only member of the two-pore domain K⁺ (K2P) channel family that is activated by an increase in intracellular Ca2+ concentration ([Ca2+]i) and linked to migraines. This study was performed to identify the effect of verapamil, which is an L-type Ca2+ channel blocker and a prophylaxis for migraines, on the TRESK channel in trigeminal ganglion (TG) neurons, as well as in a heterologous system. Single-channel and whole-cell currents were recorded in TG neurons and HEK-293 cells transfected with mTRESK using patch-clamping techniques. In TG neurons, changes in [Ca2+]i were measured using the fluo-3-AM Ca2+ indicator. Verapamil, nifedipine, and NiCl2 inhibited the whole-cell currents in HEK-293 cells overexpressing mTRESK with IC50 values of 5.2, 54.3, and >100 µM, respectively. The inhibitory effect of verapamil on TRESK channel was also observed in excised patches. In TG neurons, verapamil (10 µM) inhibited TRESK channel activity by approximately 76%. The TRESK channel activity was not dependent on the presence of extracellular Ca2+. In addition, the inhibitory effect of verapamil on the TRESK channel remained despite the absence of extracellular Ca2+. These findings show that verapamil inhibits the TRESK current independently of the blockade of Ca2+ influx in TG neurons. Verapamil will be able to exert its pharmacological effects by modulating TRESK, as well as Ca2+ influx, in TG neurons in vitro. We suggest that verapamil could be used as an inhibitor for identifying TRESK channel in TG neurons.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Neurônios/metabolismo , Canais de Potássio/metabolismo , Gânglio Trigeminal/metabolismo , Verapamil/farmacologia , Animais , Cálcio/metabolismo , Células HEK293 , Humanos , Concentração Inibidora 50 , Camundongos , Níquel/farmacologia , Nifedipino/farmacologia , Técnicas de Patch-Clamp , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Ratos , Ratos Sprague-Dawley
12.
Int J Mol Sci ; 18(11)2017 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-29156592

RESUMO

Earlier studies have demonstrated that the tandem pore domain weak inward rectifying K⁺ channel (TWIK)-related K⁺ (TREK)-1 channel is inhibited by antidepressants and is associated with major depression. However, little is known about the effect of mood stabilizers that are commonly used for treatment of bipolar disorder on TREK channels, members of the two-pore domain K⁺ (K2P) channel family. This study sought to investigate the effect of mood stabilizers on TREK-1 and TREK-2 channels. HEK-293A cells were transfected with human TREK-1 or TREK-2 DNA. The effect of mood stabilizers on TREK-1 and TREK-2 was studied using the patch clamp technique. Changes in TREK protein expression by mood stabilizers were studied in the HT-22 mouse hippocampal neuronal cells using western blot analysis. Lithium chloride (LiCl, 1 mM), gabapentin (100 µM), valproate (100 µM), and carbamazepine (100 µM) increased TREK-1 currents by 31 ± 14%, 25 ± 11%, 28 ± 12%, and 72 ± 12%, respectively, whereas they had no effect on TREK-2 channel activity. In addition, western blot analysis showed LiCl and carbamazepine slightly upregulated TREK-1 expression, but not TREK-2 in the HT-22 cells. These results suggest that TREK-1 could be a potential therapeutic target for treatment of bipolar disorders as well as depression, while TREK-2 is a target well suited for treatment of major depression.


Assuntos
Antimaníacos/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Antidepressivos/farmacologia , Antipsicóticos/farmacologia , Células HEK293 , Hipocampo/metabolismo , Humanos , Cloreto de Lítio/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ácido Valproico/farmacologia
13.
Molecules ; 21(4): 430, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27043510

RESUMO

Numerous studies have demonstrated that aged black garlic (ABG) has strong anti-oxidant activity. Little is known however regarding the anti-inflammatory activity of ABG. This study was performed to identify and compare the anti-oxidant and anti-inflammatory effects of ABG extract (ABGE) with those of fresh raw garlic (FRG) extract (FRGE). In addition, we investigated which components are responsible for the observed effects. Hydrogen peroxide (H2O2) and lipopolysaccharide (LPS) were used as a pro-oxidant and pro-inflammatory stressor, respectively. ABGE showed high ABTS and DPPH radical scavenging activities and low ROS generation in RAW264.7 cells compared with FRGE. However, inhibition of cyclooxygenase-2 and 5-lipooxygenase activities by FRGE was stronger than that by ABGE. FRGE reduced PGE2, NO, IL-6, IL-1ß, LTD4, and LTE4 production in LPS-activated RAW264.7 cells more than did ABGE. The combination of FRGE and sugar (galactose, glucose, fructose, or sucrose), which is more abundant in ABGE than in FRGE, decreased the anti-inflammatory activity compared with FRGE. FRGE-induced inhibition of NF-κB activation and pro-inflammatory gene expression was blocked by combination with sugars. The lower anti-inflammatory activity in ABGE than FRGE could result from the presence of sugars. Our results suggest that ABGE might be helpful for the treatment of diseases mediated predominantly by ROS.


Assuntos
Anti-Inflamatórios/química , Alho/química , Inflamação/tratamento farmacológico , Extratos Vegetais/química , Animais , Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Antioxidantes/química , Linhagem Celular , Humanos , Peróxido de Hidrogênio/toxicidade , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Camundongos , Extratos Vegetais/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo
14.
Korean J Physiol Pharmacol ; 20(4): 379-85, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27382354

RESUMO

TWIK-related K(+) channel-2 (TREK-2) and TWIK-related spinal cord K(+) (TRESK) channel are members of two-pore domain K(+) channel family. They are well expressed and help to set the resting membrane potential in sensory neurons. Modulation of TREK-2 and TRESK channels are involved in the pathogenesis of pain, and specifi c activators of TREK-2 and TRESK may be benefi cial for the treatment of pain symptoms. However, the effect of commonly used analgesics on TREK-2 and TRESK channels are not known. Here, we investigated the effect of analgesics on TREK-2 and TRESK channels. The effects of analgesics were examined in HEK cells transfected with TREK-2 or TRESK. Amitriptyline, citalopram, escitalopram, and fluoxetine significantly inhibited TREK-2 and TRESK currents in HEK cells (p<0.05, n=10). Acetaminophen, ibuprofen, nabumetone, and bupropion inhibited TRESK, but had no effect on TREK-2. These results show that all analgesics tested in this study inhibit TRESK activity. Further study is needed to identify the mechanisms by which the analgesics modulate TREK-2 and TRESK differently.

15.
Biochim Biophys Acta ; 1828(3): 1131-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23200789

RESUMO

TWIK (tandem-pore domain weak inward rectifying K(+))-related spinal cord K(+) channel, TRESK, a member of the tandem-pore domain K(+) channel family, is the most recently cloned K(2P) channel. TRESK is highly expressed in dorsal root ganglion neuron, a pain sensing neuron, which is a target for analgesics. In this study, a reliable 3D structure for transmembrane (TM) region of mouse TRESK (mTRESK) was constructed, and then the reasonable blocker binding mode of the protein was investigated. The 3D structure of the mTRESK built by homology modeling method was validated with recommend value of stereochemical quality. Based on the validated structure, K(+) channel blocker-bound conformation was obtained by molecular docking and 5ns MD simulation with DPPC lipid bilayer. Our docking study provides the plausible binding mode of known blockers with key interacting residues, especially, F156 and F364. Finally, these modeling results were verified by experimental study with mutation from phenylalanine to alanine (F156A, F364A and F156A/F364A) at the TM2 and TM4. This is the first modeling study for TRESK that can provide structural information of the protein including ligand binding information. These results can be useful in structure based drug design for finding new blockers of the TRESK as potential therapeutic target of pain treatment.


Assuntos
Canais de Potássio/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Alanina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Análise Mutacional de DNA , Eletrofisiologia/métodos , Células HEK293 , Humanos , Íons , Ligantes , Bicamadas Lipídicas/química , Camundongos , Conformação Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fenilalanina/química , Conformação Proteica , Homologia de Sequência de Aminoácidos , Transfecção
16.
Cancer Invest ; 32(1): 22-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24328556

RESUMO

Little is known about the biological role of human mammaglobin (hMAM) that is considered as a promising marker for breast cancer. Here, we investigated hMAM's role related to migration and invasion of human breast cancer cells (hBCC). Compared to normal cells, hBCC have high MAM mRNA expression levels. Of the hBCC tested, MAM mRNA expression levels were higher in noninvasive than in invasive cells. Overexpression of hMAM in breast cancer cells decreased migration and invasion, whereas knockdown of hMAM increased both. Taken together, these results suggest that metastasis of hBCC could be controlled by hMAM expression levels.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Mamoglobina A/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Mamoglobina A/genética , Invasividade Neoplásica , Interferência de RNA , Transfecção , Regulação para Cima
17.
Small Methods ; : e2400163, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721965

RESUMO

In addressing the increasing demand for wearable sensing systems, the performance and lifespan of such devices must be improved by enhancing their sensitivity and healing capabilities. The present work introduces an innovative method for synthesizing a healable disulfide bond contained in a polydimethylsiloxane network (PDMS-SS) that incorporates ionic salts, which is designed to serve as a highly effective dielectric layer for capacitive tactile sensors. Within the polymer network structure, the cross-linking agent pentaerythritol tetrakis 3-mercaptopropionate (PTKPM) forms reversible disulfide bonds while simultaneously increasing polymer softness and the dielectric constant. The incorporation of dioctyl sulfosuccinate sodium salt (DOSS) significantly improves the capacitance and sensing properties by forming an electrical double-layer through interactions between the electrode charge and salt ions at the contact interface. The developed polymer material-based tactile sensor shows a strong response signal at low pressure (0.1 kPa) and maintains high sensitivity (0.175 kPa-1) over a wide pressure range (0.1-10 kPa). It also maintains the same sensitivity over 10 000 repeated applications of external pressure and is easily self-healed against mechanical deformation due to the dynamic disulfide covalent bonding, restoring ≈95% of its detection capacity.

18.
J Nanosci Nanotechnol ; 13(9): 6280-5, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24205645

RESUMO

A Q-switched diode-pumped neodymium-doped yttrium vanadate (Nd:YVO4, lambda = 1064 nm) laser was applied to obtain the indium tin oxide (ITO) patterns on flexible polyethylene terephthalate (PET) substrate by a direct etching method. After the ITO films were deposited on a soda-lime glass and PET substrate, laser ablations were carried out on the ITO films for various conditions and the laser ablated results on the ITO films were investigated and analyzed considering the effects of substrates on the laser etching. The laser ablated widths on ITO deposited on glass were found to be much narrower than those on ITO deposited on PET substrate, especially, at a higher scanning speed of laser beam such as 1000 mm/s and 2000 mm/s. As the thermal conductivity of glass substrate is about 7.5 times higher than that of PET, more thermal energy would be spread and transferred to lateral direction in the ITO film in case of PET substrate.

19.
J Nanosci Nanotechnol ; 13(11): 7751-5, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24245327

RESUMO

In this work, using a Q-switched diode-pumped neodymium-doped yttrium vanadate (Nd:YVO4, lambda = 1064 nm) laser, a direct patterning of indium tin oxide (ITO) channel was realized on glass substrates and the results were compared and analyzed in terms of the effect of repetition rate, scanning speed on etching characteristics. The results showed that the laser conditions of 40 kHz repetition rate with a scanning speed of 500 mm/s were appropriate for the channeling of ITO electrodes. The length of laser-patterned channel was maintained at about 55 microm. However, residual spikes (about 50 nm in height) of ITO were found to be formed at the edges of the laser ablated area and a few ITO residues remained on the glass substrate after laser scanning. By dipping the laser-ablated ITO film in ITO diluted etchant (ITO etchant/DI water: 1/10) at 50 degrees C for 3 min, the spikes and residual ITO were effectively removed. At last, using the laser direct patterning, a bottom-source-drain indium gallium zinc oxide thin film transistor (IGZO-TFT) was fabricated. It is successfully demonstrated that the laser direct patterning can be utilized instead of photolithography to simplify the fabrication process of TFT channel, resulting in the increase of productivity and reduction of cost.


Assuntos
Lasers , Membranas Artificiais , Impressão Molecular/métodos , Nanoestruturas/química , Compostos de Estanho/química , Transistores Eletrônicos , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Substâncias Macromoleculares/química , Teste de Materiais , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície , Compostos de Estanho/efeitos da radiação
20.
Korean J Physiol Pharmacol ; 17(1): 57-64, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23440317

RESUMO

Cells can resist and even recover from stress induced by acute hypoxia, whereas chronic hypoxia often leads to irreversible damage and eventually death. Although little is known about the response(s) to acute hypoxia in neuronal cells, alterations in ion channel activity could be preferential. This study aimed to elucidate which channel type is involved in the response to acute hypoxia in rat pheochromocytomal (PC12) cells as a neuronal cell model. Using perfusing solution saturated with 95% N(2) and 5% CO(2), induction of cell hypoxia was confirmed based on increased intracellular Ca(2+) with diminished oxygen content in the perfusate. During acute hypoxia, one channel type with a conductance of about 30 pS (2.5 pA at -80 mV) was activated within the first 2~3 min following onset of hypoxia and was long-lived for more than 300 ms with high open probability (P(o), up to 0.8). This channel was permeable to Na(+) ions, but not to K(+), Ca(+), and Cl(-) ions, and was sensitively blocked by amiloride (200 nM). These characteristics and behaviors were quite similar to those of epithelial sodium channel (ENaC). RT-PCR and Western blot analyses confirmed that ENaC channel was endogenously expressed in PC12 cells. Taken together, a 30-pS ENaC-like channel was activated in response to acute hypoxia in PC12 cells. This is the first evidence of an acute hypoxia-activated Na(+) channel that can contribute to depolarization of the cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA