Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
ACS Omega ; 4(6): 10354-10361, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460129

RESUMO

In the natural state, the concentration of carbon dioxide in the atmosphere is about 300 µmol mol-1. Plants need a suitable balance of CO2 to achieve optimal growth. The optimum CO2 content corresponding to a high photosynthesis rate is between 0.1 and 1.0% by volume. However, air has only a CO2 content of 0.03% by volume, so plants cannot use all of their growth potential. The use of fertilizer to assist in the supply of CO2 increases the rate of photosynthesis. In this work, a slow-release CO2 gas fertilizer inspired by polyphenol chemistry was prepared to provide sustainable CO2 that could improve plant photosynthetic capacity and get a higher crop yield. The core-shell structure was designed to confer gas fertilizers slow-release property. Micron-sized calcium carbonate particles with uniform particle size and regularity morphology, as carbon sources for plant photosynthesis, was a core, and tannic acid was coated on it as a shell via oxidative oligomerization and cross-linked by polyetherimide. The structure and morphology of fertilizers were characterized by scanning electron microscopy, X-ray energy dispersive spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. In vitro experiments, the prepared fertilizers were proved to have slow-release properties. And then through net photosynthesis rate, chlorophyll fluorescence parameters, chlorophyll content, leaf area, leaf mass per area, and dry matter to study the effects of slow-release CO2 gas fertilizers on plant physiology of Brassica chinensis. The results revealed that the slow-release CO2 gas fertilizers not only had good slow-release properties but also can well improve plant photosynthesis.

2.
J Plant Physiol ; 220: 74-82, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29156245

RESUMO

To clarify the influence of water deficit on the functionality of the photosynthetic apparatus of cotton plants, leaf gas exchange, chlorophyll a fluorescence, and P700 redox state were examined in field-grown cotton Gossypium hirsutum L. cv. Xinluzao 45. In addition, we measured changes in the P515 signal and analyzed the activity of ATP synthase and the trans-thylakoid proton gradient (ΔpH). With increasing water deficit, the net CO2 assimilation rate (AN) and stomatal conductance (gs) significantly decreased, but the maximum quantum efficiency of PSII photochemistry (Fv/Fm) did not change. The photochemical activity of photosystem II (PSII) was reflected by the photochemical quenching coefficient (qP), quantum efficiency of photosystem II [Y(II)], and electron transport rate through PSII [ETR(II)], while the activity of photosystem I (PSI) was reflected by the quantum efficiency of photosystem I [Y(I)] and the electron transport rate through PSI [ETR(I)]. Both activities were maintained under mild water deficit, but were slightly decreased under moderate water deficit. Under moderate water deficit, cyclic electron flow (CEF), the fraction of absorbed light dissipated thermally via the ΔpH- and xanthophyll-regulated process [Y(NPQ)], and the fraction of P700 oxidized under a given set of conditions [Y(ND)] increased. Our results suggest that the activities of both photosystems are stable under mild water deficit and decrease only slightly under moderate water deficit. Moderate water deficit stimulates CEF, and the stimulation of CEF is essential for protecting PSI and PSII against photoinhibition.


Assuntos
Secas , Gossypium/fisiologia , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Água/metabolismo , Transporte de Elétrons , Estresse Fisiológico
3.
J Plant Physiol ; 194: 61-71, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27101723

RESUMO

Drought slows net photosynthetic rate (AN) but increases water use efficiency (WUE). Farmers give an artificial drought pretreatment to some crops in the early growth stage and find that yield increases accompanying with the improvement of WUE. We conducted well-watered, non-drought, mild drought and moderate drought pretreatments of potted cotton cultivars. The aims of the present study were to analyse the importance of mesophyll conductance (gm) as a factor that may simultaneously improve AN and WUE under drought pretreatment conditions, and to analyse the role of anatomical structure and biochemical mechanism in the variability of gm. Our results showed that significant variability of gm estimated by gas exchange and chlorophyll fluorescence was observed between non-drought pretreatment and drought pretreatment associated with change in AN and WUE. There was great difference in anatomical structure and expression of aquaporins (GhAQP1) among all the treatments. In addition, expression of carbonic anhydrase (CA) may not be important in the regulation of gm under drought pretreatment conditions. We concluded that the variability of gm offers a potential target for improving leaf AN and WUE simultaneously by the regulation of anatomical structure and GhAQP1.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium/fisiologia , Transpiração Vegetal/fisiologia , Água/metabolismo , Aquaporina 1/genética , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Secas , Células do Mesofilo/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Estômatos de Plantas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA