Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Sensors (Basel) ; 23(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36772558

RESUMO

In recent years, many researchers have aimed to construct robotic soft grippers that can handle fragile or unusually shaped objects without causing damage. This study proposes a smart textile-composite actuator and its application to a soft robotic gripper. An active fiber and an inactive fiber are combined together using knitting techniques to manufacture a textile actuator. The active fiber is a shape memory alloy (SMA) that is wire-wrapped with conventional fibers, and the inactive fiber is a knitting yarn. A knitted textile structure is flexible, with an excellent structure retention ability and high compliance, which is suitable for developing soft grippers. A driving source of the actuator is the SMA wire, which deforms under heating due to the shape memory effect. Through experiments, the course-to-wale ratio, the number of bundling SMA wires, and the driving current value needed to achieve the maximum deformation of the actuator were investigated. Three actuators were stitched together to make up each finger of the gripper, and layer placement research was completed to find the fingers' suitable bending angle for object grasping. Finally, the gripping performance was evaluated through a test of grasping various object shapes, which demonstrated that the gripper could successfully lift flat/spherical/uniquely shaped objects.

2.
Sensors (Basel) ; 23(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36850745

RESUMO

As the use of drones grows, so too does the demand for physical protection against drone damage resulting from collisions and falls. In addition, as the flight environment becomes more complicated, a shock absorption system is required, in which the protective structure can be deformed based on the circumstances. Here, we present an origami- and kirigami-based structure that provides protection from various directions. This research adds a deformation capacity to existing fixed-shape guards; by using shape memory alloys, the diameter and height of the protective structure are controlled. We present three protective modes (1: large diameter/low height; 2: small diameter/large height; and 3: lotus shaped) that mitigate drone falls and side collisions. From the result of the drop impact test, mode 2 showed a 78.2% reduction in the maximum impact force at side impact. We incorporated kirigami patterns into the origami structures in order to investigate the aerodynamic effects of the hollow patterns. Airflow experiments yielded a macro understanding of flow-through behaviors on each kirigami pattern. In the wind speed experiment, the change in airflow velocity induced by the penetration of the kirigami pattern was measured, and in the force measurement experiment, the air force applied to the structure was determined.

3.
Biophys J ; 112(2): 288-299, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28122215

RESUMO

The Na+,K+-ATPase is present in the plasma membrane of all animal cells. It plays a crucial role in maintaining the Na+ and K+ electrochemical potential gradients across the membrane, which are essential in numerous physiological processes, e.g., nerve, muscle, and kidney function. Its cellular activity must, therefore, be under tight metabolic control. Consideration of eosin fluorescence and stopped-flow kinetic data indicates that the enzyme's E2 conformation is stabilized by electrostatic interactions, most likely between the N-terminus of the protein's catalytic α-subunit and the adjacent membrane. The electrostatic interactions can be screened by increasing ionic strength, leading to a more evenly balanced equilibrium between the E1 and E2 conformations. This represents an ideal situation for effective regulation of the Na+,K+-ATPase's enzymatic activity, because protein modifications, which perturb this equilibrium in either direction, can then easily lead to activation or inhibition. The effect of ionic strength on the E1:E2 distribution and the enzyme's kinetics can be mathematically described by the Gouy-Chapman theory of the electrical double layer. Weakening of the electrostatic interactions and a shift toward E1 causes a significant increase in the rate of phosphorylation of the enzyme by ATP. Electrostatic stabilization of the Na+,K+-ATPase's E2 conformation, thus, could play an important role in regulating the enzyme's physiological catalytic turnover.


Assuntos
ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Eletricidade Estática , Trifosfato de Adenosina/metabolismo , Animais , Simulação de Dinâmica Molecular , Concentração Osmolar , Fosforilação , Conformação Proteica , ATPase Trocadora de Sódio-Potássio/química , Suínos
4.
Soft Matter ; 11(18): 3714-23, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25833200

RESUMO

By patterning surface grafts, we propose a simple and systematic method to form tubular structures for which two-dimensional grafted sheets are programmed to self-roll into hollow tubes with a desired size of the internal cavity. The repeating pattern of grafts utilizing defect sites causes anisotropy in the surface-grafted nanosheet, which spontaneously transforms into a curved secondary architecture and, thus, becomes a potential tool with which to form and control the curvature of nanotubes. In fact, the degree and the type of graft defect allow control of the internal cavity size and shape of the resulting nanotubes. By performing dissipative particle dynamics simulations on coarse-grained sheets, we found that the inner cavity size is inversely proportional to the graft-defect density, the difference in the graft densities between the two surface sides of the layer, regardless of whether the defects are patterned or random. While a random distribution of defects gives rise to a non-uniform local curvature and often leads to twisted tubes, regular patterns of graft defects ensure uniform local curvature throughout the sheet, which is important to generate monodisperse nanotubes. At a low graft-defect density, the sheet-to-tube transformation is governed by the layer anisotropy, which induces spontaneous scrolling along the long edge of the sheet, resulting in short tubes. Thus, the curve formation rate and the cavity diameter are independent of the pattern of the graft defects. At a high graft-defect density, however, the scroll direction owing to the graft pattern may conflict with that due to the layer anisotropy. To produce monodisperse nanotubes, two factors are important: (1) a graft-defect pattern parallel to the short edge of the layer, and (2) a graft-defect area wider than half of the graft coil length.


Assuntos
Modelos Moleculares , Nanotubos/química , Cinética , Polímeros/química
5.
Angew Chem Int Ed Engl ; 54(43): 12711-5, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26331380

RESUMO

Excited-state dynamic planarization processes play a crucial role in determining exciton size in cyclic systems, as reported for π-conjugated linear oligomers. Herein, we report time-resolved fluorescence spectra and molecular dynamics simulations of π-conjugated cyclic oligothiophenes in which the number of subunits was chosen to show the size-dependent dynamic planarization in the vicinity of a ring-to-linear behavioral turning point. Analyses on the evolution of the total fluorescence intensity and the ratio between 0-1 to 0-0 vibronic bands suggest that excitons formed in a cyclic oligothiophene composed of six subunits fully delocalize over the cyclic carbon backbone, whereas those formed in larger systems fail to achieve complete delocalization. With the aid of molecular dynamics simulations, it is shown that distorted structures unfavorable for efficient exciton delocalization are more easily populated as the size of the cyclic system increases.

6.
Biomimetics (Basel) ; 9(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38534851

RESUMO

Knee osteoarthritis (OA), also known as degenerative arthritis, is a disease characterized by irreversible changes in the cartilage and bones comprising the joints, resulting in pain, impaired function, and deformity. Furthermore, independent of natural aging, the rate of change in joint cartilage has increased in recent years, which is mainly attributed to environmental factors. The rising incidence of knee-related disorders emphasizes the importance of analyzing the morphology and kinematics of knee structure. This study introduces a knee measurement system designed to replicate the motions of knee using 3D-printing technology, providing insights into knee mechanics with OA level. The research explores the stages of OA using the Kellgren-Lawrence (KL) grade scale, highlighting the variations in the force applied to the knee bone according to movement. The developed knee-simulation system, utilizing the four-bar-link theory, presents a novel approach to studying OA levels 0 to 4. As OA progresses, the cartilage deteriorates, affecting the movement of OA. The OA-based knee measurement system that incorporates soft tissues and skeletons can assist in developing a personalized diagnostic approach for knee disease. This will also help to enhance surgical effectiveness by facilitating the creation of personalized prosthetic joints for individual patients and offering a customized surgical simulation.

7.
Biomimetics (Basel) ; 9(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38786465

RESUMO

Every year, almost 4 million patients received medical care for knee osteoarthritis. Osteoarthritis involves progressive deterioration or degenerative changes in the cartilage, leading to inflammation and pain as the bones and ligaments are affected. To enhance treatment and surgical outcomes, various studies analyzing the biomechanics of the human skeletal system by fabricating simulated bones, particularly those reflecting the characteristics of patients with knee osteoarthritis, are underway. In this study, we fabricated replicated bones that mirror the bone characteristics of patients with knee osteoarthritis and developed a skeletal model that mimics the actual movement of the knee. To create patient-specific replicated bones, models were extracted from computerized tomography (CT) scans of knee osteoarthritis patients. Utilizing 3D printing technology, we replicated the femur and tibia, which bear the weight of the body and support movement, and manufactured cartilage capable of absorbing and dispersing the impact of knee joint loads using flexible polymers. Furthermore, to implement knee movement in the skeletal model, we developed artificial muscles based on shape memory alloys (SMAs) and used them to mimic the rolling, sliding, and spinning motions of knee flexion. The knee movement was investigated by changing the SMA spring's position, the number of coils, and the applied voltage. Additionally, we developed a knee-joint-mimicking system to analyze the movement of the femur. The proposed artificial-skeletal-model-based knee-joint-mimicking system appears to be applicable for analyzing skeletal models of knee patients and developing surgical simulation equipment for artificial joint replacement surgery.

8.
Polymers (Basel) ; 16(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732745

RESUMO

A Dielectric Elastomer Actuator (DEA) consists of electrodes with a dielectric layer between them. By controlling the design of the electrodes, voltage, and frequency, the operating range and speed of the DEA can be adjusted. These DEAs find applications in biomimetic robots, artificial muscles, and similar fields. When voltage is applied to the DEA, the dielectric layer undergoes compression and expansion due to electrostatic forces, which can lead to electrical breakdown. This phenomenon is closely related to the performance and lifespan of the DEA. To enhance stability and improve dielectric properties, a DEA Reservoir layer is introduced. Here, stability refers to the ability of the DEA to perform its functions even as the applied voltage increases. The Reservoir layer delays electrical breakdown and enhances stability due to its enhanced thickness. The proposed DEA in this paper is composed of a Reservoir layer and electrode layer. The Reservoir layer is placed between the electrode layers and is independently configured, not subjected to applied voltage like the electrode layers. The performance of the DEA was evaluated by varying the number of polymer layers in the Reservoir and electrode designs. Introducing the Reservoir layer improved the dielectric properties of the DEA and delayed electrical breakdown. Increasing the dielectric constant through the DEA Reservoir can enhance output characteristics in response to electrical signals. This approach can be utilized in various applications in wearable devices, artificial muscles, and other fields.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124145, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484643

RESUMO

Cyanine-based cationic dyes with different substituents in the donor unit were easily synthesized using readily available starting materials. The prepared dye molecules were spectroscopically characterized by NMR, FT-IR, and HR-Mass, and their thermal stability was measured by TGA, DSC, and XRD. Based on the TGA and DSC measurements, it was concluded that all the dyes are thermally stable up to 200 °C. Also, powder XRD was studied for all dyes to identify the explicit crystallinity and morphological nature of the dyes. A dye dispersion solution was prepared for the proper dyeing of modacrylic fabric and the dyed fabric showed good color strength K/S for dyes R1, R2, and R6 and fragile color strength for R3, R4,and R5. These dyes are also used for printing on substrates like paper and fabric using ink-jet printing. These dyes were also used for transferability printing applications on various fabrics.

10.
Biosci Biotechnol Biochem ; 77(8): 1682-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23924730

RESUMO

Oxidative stress due to the over-production of reactive oxygen species (ROS) is associated with human skin aging. This study was designed to identify the bioactive phenolics in detoxified Rhus verniciflua Stokes (DRVS) that may protect human skin against oxidative stress. Under oxidative stress caused by H2O2, the 40% (v/v) aqueous methanol extract of DRVS protected human keratinocytes in a dose-dependent manner. The expression of matrix metalloproteinase-1 (MMP-1) was also inhibited by the DRVS extract in human dermal fibroblasts-neonatal cells exposed to ultraviolet A. The major bioactive phenolics of DRVS were tentatively identified by LC/Q-TOF-ESI-MS/MS, and included gallic acid, 2-(ethoxymethoxy)-3-hydroxyphenol, fustin, a fustin isomer, tetragalloyl glucose, pentagalloyl glucose, fisetin, sulfuretin, a sulfuretin isomer, and butein. The results suggest that a DRVS extract may be effective in slowing skin aging through its antioxidative properties and by down-regulating MMP-1 expression. Further studies are needed to examine whether this effect would be mediated by the phenolics identified in this study.


Assuntos
Fibroblastos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Fenóis/isolamento & purificação , Extratos Vegetais/farmacologia , Toxicodendron/química , Linhagem Celular , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/toxicidade , Queratinócitos/efeitos da radiação , Metaloproteinase 1 da Matriz/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Fenóis/química , Fenóis/farmacologia , Extratos Vegetais/química , Espécies Reativas de Oxigênio , Espectrometria de Massas em Tandem , Raios Ultravioleta
11.
Materials (Basel) ; 16(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37629808

RESUMO

Textiles composed of fibers can have their mechanical properties adjusted by changing the arrangement of the fibers, such as strength and flexibility. Particularly, in the case of smart textiles incorporating active materials, various deformations could be created based on fiber patterns that determine the directivity of active materials. In this study, we design a smart fiber-based textile actuator with a chain structure and evaluate its actuation characteristics. Smart fiber composed of shape memory alloy (SMA) generates deformation when the electric current is applied, causing the phase transformation of SMA. We fabricated the smart chain column and evaluated its actuating mechanism based on the size of the chain and the number of rows. In addition, a crochet textile actuator was designed using interlooping smart chains and developed into a soft gripper that can grab objects. With experimental verifications, this study provides an investigation of the relationship between the chain actuator's deformation, actuating force, actuator temperature, and strain. The results of this study are expected to be relevant to textile applications, wearable devices, and other technical fields that require coordination with the human body. Additionally, it is expected that it can be utilized to configure a system capable of flexible operation by combining rigid elements such as batteries and sensors with textiles.

12.
Polymers (Basel) ; 15(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36904367

RESUMO

Soft actuators that execute diverse motions have recently been proposed to improve the usability of soft robots. Nature-inspired actuators, in particular, are emerging as a means of accomplishing efficient motions based on the flexibility of natural creatures. In this research, we present an actuator capable of executing multi-degree-of-freedom motions that mimics the movement of an elephant's trunk. Shape memory alloys (SMAs) that actively react to external stimuli were integrated into actuators constructed of soft polymers to imitate the flexible body and muscles of an elephant's trunk. The amount of electrical current provided to each SMA was adjusted for each channel to achieve the curving motion of the elephant's trunk, and the deformation characteristics were observed by varying the quantity of current supplied to each SMA. It was feasible to stably lift and lower a cup filled with water by using the operation of wrapping and lifting objects, as well as effectively performing the lifting task of surrounding household items of varying weights and forms. The designed actuator is a soft gripper that incorporates a flexible polymer and an SMA to imitate the flexible and efficient gripping action of an elephant trunk, and its fundamental technology is expected to be used as a safety-enhancing gripper that requires environmental adaptation.

13.
ACS Sens ; 8(7): 2591-2597, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37235879

RESUMO

The determination of trypsin activity in human urine is important for evaluating pancreatic disease. We designed an effective fluorescence sensing strategy based on a self-assembled amphiphilic pyrene/protamine complex system that provides an amplified fluorescence response for highly sensitive and selective detection of trypsin. In aqueous solution, the functionalized pyrene formed fluorescent, π-extended aggregates inside micelles, which were effectively quenched by protamine (a trypsin substrate). However, this quenched fluorescence was very sensitively recovered by the trypsin's enzymatic reaction, and this was attributed to a marked reduction in enhanced exciton migration caused by protamine in π-delocalized pyrene aggregates. The devised sensing platform was successfully utilized to selectively and sensitively detect trypsin at very low concentrations (0.03-0.5 µg mL-1) in non-pretreated human urine and to screen for trypsin inhibitors at concentrations of 0.1-5.0 µg mL-1.


Assuntos
Corantes Fluorescentes , Protaminas , Humanos , Tripsina , Fluorescência , Pirenos
14.
Materials (Basel) ; 16(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36676477

RESUMO

Several composite materials are being investigated as reinforcement fillers for surgery simulations. This study presents an artificial composite material with properties similar to those of the human bone, which may be used in surgery simulations. Moreover, considering the potential toxicity of debris generated during sawing, a safe epoxy-based composite material was synthesized using cellulose nanocrystals (CNCs) and bioceramics (i.e., hydroxyapatite, Yttria stabilized zirconia oxide, Zirconia oxide), which were used to mimic the stiffness of human bone. To examine the change in mechanical properties according to the composition, 1, 3, and 5 wt% of CNCs were mixed with 5 wt% of the bioceramics. When CNCs were added at 1 wt%, there was a confirmed change in the non-linear stiffness and ductility. The CNC-added specimen fractured when forming a nano-network around the local CNCs during curing. In contrast, the specimen without CNCs was more densely structured, and combined to form a network of all specimens such that a plastic region could exist. Thus, this study successfully manufactured a material that could mimic longitudinal and transverse characteristics similar to those of real human bone, as well as exhibit mechanical properties such as strength and stiffness. Bioceramics are harmless to the human body, and can be used by controlling the added quantity of CNCs. We expect that this material will be suitable for use in surgery simulations.

15.
Adv Mater ; 35(33): e2208517, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37074738

RESUMO

Shape memory alloys (SMAs) are smart materials that are widely used to create intelligent devices because of their high energy density, actuation strain, and biocompatibility characteristics. Given their unique properties, SMAs are found to have significant potential for implementation in many emerging applications in mobile robots, robotic hands, wearable devices, aerospace/automotive components, and biomedical devices. Here, the state-of-the-art of thermal and magnetic SMA actuators in terms of their constituent materials, form, and scaling effects are summarized, including their surface treatments and functionalities. The motion performance of various SMA architectures (wires, springs, smart soft composites, and knitted/woven actuators) is also analyzed. Based on the assessment, current challenges of SMAs that need to be addressed for their practical application are emphasized. Finally, how to advance SMAs by synergistically considering the effects of material, form, and scale is suggested.

16.
J Med Chem ; 66(20): 14263-14277, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37796116

RESUMO

Thiopeptides exhibit potent antimicrobial activity against Gram-positive pathogens by inhibiting bacterial protein synthesis. Micrococcins are among the structurally simpler thiopeptides, but they have not been exploited in detail. This research involved a computational simulation of micrococcin P2 (MP2) docking in parallel with the structure-activity relationship (SAR) studied. The incorporation of particular nitrogen heterocycles in the side chain of MP2 enhances the antimicrobial activity. Micrococcin analogues 6c and 6d thus proved to be more effective against impetigo and C. difficile infection (CDI), respectively, as compared to current first-line treatments. Compound 6c also showed a shorter treatment period than that of a first-line treatment for impetigo. This may be attributed to its ability to downregulate pro-inflammatory cytokines. Compound 6d had no observed recurrence for C. difficile and exerted a minimal impact on the beneficial gut microbiome. Their pharmacokinetic properties and low toxicity profile make these compounds ideal candidates for the treatment of impetigo and CDI and validate their involvement in preclinical development.


Assuntos
Clostridioides difficile , Impetigo , Humanos , Antibacterianos/farmacologia , Antibacterianos/química
17.
Comput Struct Biotechnol J ; 20: 6360-6374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420156

RESUMO

G protein-coupled receptors (GPCRs) are promising drug targets because they play a large role in physiological processes by modulating diverse signaling pathways in the human body. The GPCR-mediated signaling pathways are regulated by four types of ligands-agonists, neutral antagonists, partial agonists, and inverse agonists. Once each type of ligand is bound to the binding site, it activates, deactivates, or does not perturb signaling by shifting the conformational ensemble of GPCRs. Predicting the ligand's effect on the conformation at the binding moment could be a powerful screening tool for rational GPCR drug design. Here, we detected conformational differences by capturing the spatiotemporal residue pair pattern of the ligand-bound ß2-adrenergic receptor (ß2AR) using a 3-dimensional residual network, 3D-ResNets. The network was trained with the time series of protein distance maps extracted from hundreds of molecular dynamics (MD) simulation trajectories of ten ß2AR-ligand complexes. The MD system was constructed with a lipid bilayer embedded in an inactive ß2AR X-ray crystal structure and solvated with explicit water molecules. To train the network, three hyperparameters were tested, and it was found that the number of MD trajectories in the training set significantly affected the model's accuracy. The classification of agonists and neutral antagonists was successful, but inverse agonists were not. Between the agonists and antagonists, different residue pair patterns were spotted on the extracellular loop segment. This result demonstrates the potential application of a 3-D neural network in GPCR drug screening, as well as an analysis tool for protein functional dynamics.

18.
Chem Asian J ; 17(18): e202200458, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35767005

RESUMO

Detection of heparin (HP) under physiological conditions is difficult due to the presence of biological obstructions including proteins and lipids. Thus, it is highly challenging to selectively detect HP and to increase its sensitivity in complex systems. Here, we report the detection of HP at nanomolar levels via efficient imidazolium-HP interaction-assisted fluorescence quenching amplification. The self-assembled pyrenyl aggregates are devised as a conduit for efficient exciton transport, which induces amplified fluorescence quenching for HP detection. This amplified quenching is enhanced by introducing an imidazolium receptor designed to have a high affinity to HP via electrostatic and/or additional interactions with C2 protons, resulting in a very high Stern-Volmer quenching constant of approximately 1.17×108  M-1 .


Assuntos
Heparina , Espectrometria de Fluorescência/métodos , Eletricidade Estática
19.
Nutrients ; 14(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35406121

RESUMO

Cachexia, which is characterised by the wasting of fat and skeletal muscles, is the most common risk factor for increased mortality rates among patients with advanced lung cancer. PTHLH (parathyroid hormone-like hormone) is reported to be involved in the pathogenesis of cancer cachexia. However, the molecular mechanisms underlying the regulation of PTHLH expression and the inhibitors of PTHLH have not yet been identified. The PTHLH mRNA levels were measured using quantitative real-time polymerase chain reaction, while the PTHrP (parathyroid hormone-related protein) expression levels were measured using Western blotting and enzyme-linked immunosorbent assay. The interaction between TCF4 (Transcription Factor 4) and TWIST1 and the binding of the TCF4-TWIST1 complex to the PTHLH promoter were analysed using co-immunoprecipitation and chromatin immunoprecipitation. The results of the mammalian two-hybrid luciferase assay revealed that emodin inhibited TCF4-TWIST1 interaction. The effects of Polygonum cuspidatum extract (Pc-Ex), which contains emodin, on cachexia were investigated in vivo using A549 tumour-bearing mice. Ectopic expression of TCF4 upregulated PTHLH expression. Conversely, TCF4 knockdown downregulated PTHLH expression in lung cancer cells. The expression of PTHLH was upregulated in cells ectopically co-expressing TCF4 and TWIST1 when compared with that in cells expressing TCF4 or TWIST1 alone. Emodin inhibited the interaction between TCF4 and TWIST1 and consequently suppressed the TCF4/TWIST1 complex-induced upregulated mRNA and protein levels of PTHLH and PTHrP. Meanwhile, emodin-containing Pc-Ex significantly alleviated skeletal muscle atrophy and downregulated fat browning-related genes in A549 tumour-bearing mice. Emodin-containing Pc-Ex exerted therapeutic effects on lung cancer-associated cachexia by inhibiting TCF4/TWIST1 complex-induced PTHrP expression.


Assuntos
Emodina , Fallopia japonica , Neoplasias Pulmonares , Animais , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/prevenção & controle , Emodina/farmacologia , Emodina/uso terapêutico , Humanos , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/tratamento farmacológico , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Proteínas Nucleares/genética , Proteína Relacionada ao Hormônio Paratireóideo/genética , Extratos Vegetais , RNA Mensageiro/metabolismo , Fator de Transcrição 4/genética , Proteína 1 Relacionada a Twist/genética
20.
J Chem Phys ; 134(20): 204901, 2011 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-21639471

RESUMO

We investigated the formation of various micelle shapes of lipid-like amphiphilic AB(2) miktoarm star copolymers in a solution, by performing dissipative particle dynamics simulations. AB(2) miktoarm star copolymer molecules are modeled with coarse-grained structures that consist of a relatively hydrophilic head (A) group with a single arm and a hydrophobic tail (B) group with double arms. A decrease in the hydrophilicity of the head group leads to a reduction of the polymer-solvent contact area, causing cluster structure changes from spherical micelles to vesicles. Consequently, a spherical exterior with multi-lamellar or cylindrical phase interior structures forms under poor solvent conditions without the introduction of spherical hard-wall containers. Furthermore we observed that, for small head group lengths, vesicles were formed in much wider range of solvent-head interaction strength than for long head groups, indicating that molecules with short head group offer a superior vesicle forming property. A phase diagram, the structure and kinetics of the cluster formation, a density profile, and a detailed shape analysis are presented to discuss the molecular characteristics of potential candidates for drug carriers that require superior and versatile vesicle forming properties. We also show that, under certain solvent-hydrophilic head group interaction conditions, initially formed cylindrical micelles transform to bilayer fragments through redistribution of copolymers within the cluster.


Assuntos
Polímeros/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Dinâmica Molecular , Estrutura Molecular , Polímeros/síntese química , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA