Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Arthroscopy ; 40(4): 1093-1104.e2, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38000485

RESUMO

PURPOSE: To investigate the effect of recombinant human parathyroid hormone (rhPTH) biocomposite on bone-to-tendon interface (BTI) healing for surgical repair of a chronic rotator cuff tear (RCT) model of rabbit, focusing on genetic, histologic, biomechanical and micro-computed tomography (CT) evaluations. METHODS: Sixty-four rabbits were equally assigned to the 4 groups: saline injection (group A), nanofiber sheet alone (group B), rhPTH-soaked nanofiber sheet (nanofiber sheet was soaked with rhPTH, group C), and rhPTH biocomposite (rhPTH permeated the nanofiber sheet by coaxial electrospinning, group D). The release kinetics of rhPTH (groups C and D) was examined for 6 weeks in vitro. Nanofiber scaffolds were implanted on the surface of the repair site 6 weeks after the induction of chronic RCT. Genetic and histologic analyses were conducted 4 weeks after surgery. Furthermore, genetic, histologic, biomechanical, micro-CT, and serologic analyses were performed 12 weeks after surgery. RESULTS: In vivo, group D showed the highest collagen type I alpha 1 (COL1A1), collagen type III alpha 1 (COL3A1), and bone morphogenetic protein 2 (BMP-2) messenger RNA (mRNA) expression levels (all P < .001) 4 weeks after surgery; however, there were no differences between groups at 12 weeks postsurgery. After 12 weeks postsurgery, group D showed better collagen fiber continuity and orientation, denser collagen fibers, more mature bone-to-tendon junction, and greater fibrocartilage layer formation compared with the other groups (all P < .05). Furthermore, group D showed the highest load-to-failure rate (28.9 ± 2.0 N/kg for group A, 30.1 ± 3.3 N/kg for group B, 39.7 ± 2.7 N/kg for group C, and 48.2 ± 4.5 N/kg for group D, P < .001) and micro-CT outcomes, including bone and tissue mineral density, and bone volume/total volume rate (all P < .001) at 12 weeks postsurgery. CONCLUSIONS: In comparison to rhPTH-soaked nanofiber sheet and the other control groups, rhPTH biocomposite effectively accelerated BTI healing by enhancing the mRNA expression levels of COL1A1, COL3A1, and BMP-2 at an early stage and achieving tenogenesis, chondrogenesis, and osteogenesis at 12 weeks after surgical repair of a chronic RCT model of rabbit. CLINICAL RELEVANCE: The present study might be a transitional study to demonstrate the efficacy of rhPTH biocomposites on BTI healing for surgical repair of chronic RCTs as an adaptable polymer biomaterial in humans.


Assuntos
Lesões do Manguito Rotador , Animais , Humanos , Coelhos , Lesões do Manguito Rotador/cirurgia , Lesões do Manguito Rotador/patologia , Osteogênese , Condrogênese , Cicatrização , Modelos Animais de Doenças , Tendões/cirurgia , Hormônio Paratireóideo/farmacologia , Hormônio Paratireóideo/uso terapêutico , Colágeno/farmacologia , RNA Mensageiro , Fenômenos Biomecânicos
2.
Am J Sports Med ; 51(9): 2431-2442, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37345646

RESUMO

BACKGROUND: Functional restoration of the bone-to-tendon interface (BTI) after rotator cuff repair is a challenge. Therefore, numerous biocompatible biomaterials for promoting BTI healing have been investigated. PURPOSE: To determine the efficacy of scaffolds with spatiotemporal delivery of growth factors (GFs) to accelerate BTI healing after rotator cuff repair. STUDY DESIGN: Controlled laboratory study. METHODS: An advanced 3-dimensional printing technique was used to fabricate bioactive scaffolds with spatiotemporal delivery of multiple GFs targeting the tendon, fibrocartilage, and bone regions. In total, 50 rabbits were used: 2 nonoperated controls and 48 rabbits with induced chronic rotator cuff tears (RCTs). The animals with RCTs were divided into 3 groups: (A) saline injection, (B) scaffold without GF, and (C) scaffold with GF. To induce chronic models, RCTs were left unrepaired for 6 weeks; then, surgical repairs with or without bioactive scaffolds were performed. For groups B and C, each scaffold was implanted between the bony footprint and the supraspinatus tendon. Four weeks after repair, quantitative real-time polymerase chain reaction and immunofluorescence analyses were performed to evaluate early signs of regenerative healing. Histological, biomechanical, and micro-computed tomography analyses were performed 12 weeks after repair. RESULTS: Group C had the highest mRNA expression of collagen type I alpha 1, collagen type III alpha 1, and aggrecan. Immunofluorescence analysis showed the formation of an aggrecan+/collagen II+ fibrocartilaginous matrix at the BTI when repaired with scaffold with GFs. Histologic analysis revealed greater collagen fiber continuity, denser collagen fibers, and a more mature tendon-to-bone junction in GF-embedded scaffolds than those in the other groups. Group C demonstrated the highest load-to-failure ratio, and modulus mapping showed that the distribution of the micromechanical properties of the BTI repaired with GF-embedded scaffolds was comparable with that of the native BTI. Micro-computed tomography analysis identified the highest bone mineral density and bone volume/total volume ratio in group C. CONCLUSION: Bioactive scaffolds with spatially embedded GFs have significant potential to promote the BTI healing of chronic RCTs in a rabbit model. CLINICAL RELEVANCE: The scaffolds with spatiotemporal delivery of GF may serve as an off-the-shelf biomaterial graft to promote the healing of RCTs.


Assuntos
Lesões do Manguito Rotador , Animais , Coelhos , Lesões do Manguito Rotador/cirurgia , Cicatrização , Agrecanas , Tendões/cirurgia , Colágeno , Materiais Biocompatíveis , Fenômenos Biomecânicos , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA