Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 96(26): 10851-10859, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38912707

RESUMO

Mitochondrial Membrane Chromatography (MMC) is a bioaffinity chromatography technique developed to study the interaction between target proteins embedded in the mitochondrial membrane and their ligand compounds. However, the MMC stationary phases (MMSP) prepared by chemical immobilization are prone to nonspecific binding in candidate agent screening inevitably. To address these challenges, Twin Strep-Tag/Strep Tactin was employed to establish a specific affinity system in the present study. We prepared a carnitine palmitoyltransferase 1A (CPT1A) MMSP by specifically linking Strep-tactin-modified silica gel with the Twin Strep-Tag on the CPT1A-oriented mitochondrial membrane. This Twin Strep-Tag/Strep Tactin modified CPT1A/MMC method exhibited remarkably better retention behavior, longer stationary phase lifespan, and higher screening specificity compared with previous MMC systems with glutaraldehyde immobilization. We adopted the CPT1A-specific MMC system in screening CPT1A ligands from traditional Chinese medicines, and successfully identified novel candidate ligands: ononin, isoliquiritigenin, and aloe-emodin, from Glycyrrhiza uralensis Fisch and Senna tora (L.) Roxb extracts. Biological assessments illustrated that the compounds screened promote CPT1A enzyme activity without affecting CPT1A protein expression, as well as effectively reduce the lipid droplets and triglyceride levels in the high fat induction HepG2 cells. The results suggest that we have developed an MMC system, which is promising for studying the bioaffinity of mitochondrial membrane proteins to candidate compounds. This system provides a platform for a key step in mitochondrial medicine discovery, especially for bioactive molecule screening from complex herbal extracts.


Assuntos
Carnitina O-Palmitoiltransferase , Metabolismo dos Lipídeos , Membranas Mitocondriais , Humanos , Carnitina O-Palmitoiltransferase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Cromatografia de Afinidade , Ligantes
2.
Anal Bioanal Chem ; 416(6): 1457-1468, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38231254

RESUMO

Gastrointestinal mesenchymal tumors, as the most common mesenchymal tumors in the gastrointestinal tract, are adjuvantly treated with multi-targeted tyrosine kinase inhibitors, such as imatinib and sunitinib, but there are problems of drug resistance and complex methods of monitoring therapeutic agents. The pathogenesis of this disease is related to mutations in tyrosine kinase (KIT) or platelet-derived growth factor receptor α, an important target for drug therapy. In recent years, the screening of relevant tyrosine kinase inhibitors from traditional Chinese medicine has become a hotspot in antitumor drug research. In the current study, the KIT-SNAP-tag cell membrane chromatography (KIT-SNAP-tag/CMC) column was prepared with satisfying specificity, selectivity, and reproducibility by chemically bonding high KIT expression cell membranes to the silica gel surface using the SNAP-tag technology. The KIT-SNAP-tag/CMC-HPLC-MS two-dimensional coupling system was investigated using the positive drug imatinib, and the results showed that the system was a reliable model for screening potential antitumor compounds from complex systems. This system screened and identified three potential active compounds of evodiamine (EVO), rutaecarpin (RUT), and dehydroevodiamine (DEVO), which possibly target the KIT receptor, from the alcoholic extract of the traditional Chinese medicine Evodia rutaecarpa. Then, the KD values of the interaction of EVO, RUT, and DEVO with KIT receptors measured using nonlinear chromatography were 7.75 (±4.93) × 10-6, 1.42 (±0.71) × 10-6, and 2.34 (±1.86) × 10-6 mol/L, respectively. In addition, the methyl thiazolyl tetrazolium assay validated the active effects of EVO and RUT in inhibiting the proliferation of high KIT-expressing cells in the ranges of 0.1-10 µmol/L and 0.1-50 µmol/L, respectively. In conclusion, the KIT-SNAP-tag/CMC could be a reliable model for screening antitumor components from complex systems.


Assuntos
Evodia , Neoplasias Gastrointestinais , Humanos , Mesilato de Imatinib/farmacologia , Evodia/química , Espectrometria de Massa com Cromatografia Líquida , Reprodutibilidade dos Testes , Receptores Proteína Tirosina Quinases , Neoplasias Gastrointestinais/tratamento farmacológico , Membrana Celular
3.
J Sep Sci ; 47(11): e2300924, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38819784

RESUMO

Mas-related G protein-coupled receptor X2 (MrgprX2) is acknowledged as a mast cell-specific receptor, playing a crucial role in orchestrating anaphylactoid responses through mast cell degranulation. It holds promise as a target for regulating allergic and inflammatory diseases mediated by mast cells. Polygonum cuspidatum (PC) has shown notable anti-anaphylactoid effects, while its pharmacologically active components remain unclear. In this study, we successfully utilized MrgprX2 high-expressing cell membrane chromatography (CMC), in conjunction with liquid chromatography-mass spectrometry (LC-MS), to identify active anti-anaphylactoid components in PC. Our study pinpointed polydatin, resveratrol, and emodin-8-O-ß-d-glucoside as potential anti-anaphylactoid compounds in PC. Their anti-anaphylactoid activities were evaluated through ß-aminohexosidase and histamine release assays, demonstrating a concentration-dependent inhibition for both ß-aminohexosidase and histamine release. This approach, integrating MrgprX2 high-expression CMC with LC-MS, proves effective in screening potential anti-anaphylactoid ingredients in natural herbal medicines. The findings from this study illuminated the anti-anaphylactoid properties of specific components in PC and provided an efficient method for the drug development of natural products.


Assuntos
Fallopia japonica , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos , Receptores Acoplados a Proteínas G/metabolismo , Fallopia japonica/química , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/antagonistas & inibidores , Humanos , Espectrometria de Massas , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/química , Cromatografia Líquida , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glucosídeos/farmacologia , Glucosídeos/química , Glucosídeos/análise , Estrutura Molecular , Espectrometria de Massa com Cromatografia Líquida
4.
J Cardiovasc Pharmacol ; 81(4): 259-269, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36668724

RESUMO

ABSTRACT: Mitochondrial dysfunction plays a key role in the development of heart failure, but targeted therapeutic interventions remain elusive. Previous studies have shown coenzyme Q10 (CoQ10) insufficiency in patients with heart disease with undefined mechanism and modest effectiveness of CoQ10 supplement therapy. Using 2 transgenic mouse models of cardiomyopathy owing to cardiac overexpression of Mst1 (Mst1-TG) or ß 2 -adrenoceptor (ß 2 AR-TG), we studied changes in cardiac CoQ10 content and alterations in CoQ10 biosynthesis genes. We also studied in Mst1-TG mice effects of CoQ10, delivered by oral or injection regimens, on both cardiac CoQ10 content and cardiomyopathy phenotypes. High performance liquid chromatography and RNA sequencing revealed in both models significant reduction in cardiac content of CoQ10 and downregulation of most genes encoding CoQ10 biosynthesis enzymes. Mst1-TG mice with 70% reduction in cardiac CoQ10 were treated with CoQ10 either by oral gavage or i.p. injection for 4-8 weeks. Oral regimens failed in increasing cardiac CoQ10 content, whereas injection regimen effectively restored the cardiac CoQ10 level in a time-dependent manner. However, CoQ10 restoration in Mst1-TG mice did not correct mitochondrial dysfunction measured by energy metabolism, downregulated expression of marker proteins, and oxidative stress nor to preserve cardiac contractile function. In conclusion, mouse models of cardiomyopathy exhibited myocardial CoQ10 deficiency likely due to suppressed endogenous synthesis of CoQ10. In contrast to ineffectiveness of oral administration, CoQ10 administration by injection regimen in cardiomyopathy mice restored cardiac CoQ10 content, which, however, failed in achieving detectable efficacy at molecular and global functional levels.


Assuntos
Cardiomiopatias , Ubiquinona , Camundongos , Animais , Ubiquinona/metabolismo , Ubiquinona/uso terapêutico , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/genética , Coração , Camundongos Transgênicos
5.
Anal Bioanal Chem ; 415(7): 1371-1383, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36651973

RESUMO

In this study, a novel cell membrane chromatography (CMC) model was developed to investigate cluster of differentiation 147 (CD147) targeted anti-tumor drug leads for specific screening and ligand-receptor interaction analysis by SNAP-tagged CD147 fusion protein conjugation and polystyrene microspheres (PS) modification. Traditional Chinese medicines (TCMs) are widely used in the treatment of cancer. CD147 plays important roles in tumor progression and acts as an attractive target for therapeutic intervention; therapeutic drugs for CD147-related cancers are limited to date. Thus, a screening method for active components in TCMs is crucial for the further research and development of CD147 antagonists. However, improvement is still needed to perform specific and accurate drug lead screening using the CMC-based method. Recently, our group developed a covalently immobilized receptor-SNAP-tag/CMC model using silica gel as carrier. Besides the carboxyl group on multi-step modified silica particles, the amino group of benzyl-guanine (BG, substrate of SNAP-tag) also possesses reactivity towards the carboxyl group on available carboxyl-modified PS. Herein, we used PS as carrier and an extended SNAP-tag with CD147 receptor to construct the PS-BG-CD147/CMC model for active compound investigation coupled with HPLC/MS and applied this coupled PS-BG-CD147/CMC-HPLC/MS two-dimensional system to drug lead screening from Nelumbinis Plumula extract (NPE) sample. In addition, to comprehensively verify the pharmacological effects of screened ingredients, a cell proliferation inhibition assay was performed, and the interaction between the ingredients and CD147 was studied by the frontal analysis method. This study developed a high-throughput PS-based CMC screening platform, which could be widely applied and utilized in chromatographic separation and drug lead discovery.


Assuntos
Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/química , Poliestirenos/análise , Microesferas , Cromatografia Líquida de Alta Pressão/métodos , Membrana Celular/química
6.
Anal Bioanal Chem ; 414(19): 5741-5753, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35697810

RESUMO

Pseudo-allergic reactions (PARs) are IgE-independent hypersensitivity reactions. Mas-related G protein-coupled receptor-X2 (MrgX2) was proved the key receptor of PAR. The anti-pseudo-allergic compound discovery based on MrgX2 was of great value. Cell membrane chromatography (CMC) based on MrgX2 provides a convenient and effective tool in anti-pseudo-allergic compound screening and discovery, and further improvements of this method are still needed. In this work, SNAP-tag was introduced at C-terminal of Mas-related G protein-coupled receptor (MrgX2-SNAP-tag), and an MrgX2-SNAP-tag/CMC model was then conducted using CMC technique. Comparative experiments showed that the new model not only satisfied the good selectivity and specificity of screening but also exhibited more stable and longer life span than traditional MrgX2/CMC model. By coupling with HPLC-MS, two compounds were screened out from Arnebiae Radix and identified as shikonin and acetylshikonin. Nonlinear chromatography was performed to study the interactions between two screened compounds and MrgX2, and binding constant (KA) of shikonin and acetylshikonin with MrgX2 were 2075.67 ± 0.34 M-1 and 32201.36 ± 0.35 M-1, respectively. Furthermore, ß-hexosaminidase and histamine release assay in vitro demonstrated that shikonin (1-5 µM) and acetylshikonin (2.5-10 µM) could both antagonize C48/80-induced allergic reaction. In conclusion, the MrgX2-SNAP-tag/CMC could be a reliable model for screening pseudo-allergy-related components from complex systems.


Assuntos
Antialérgicos , Receptores de Neuropeptídeos , Antialérgicos/análise , Antialérgicos/metabolismo , Antialérgicos/farmacologia , Membrana Celular/metabolismo , Cromatografia Líquida , Espectrometria de Massas , Mastócitos/química , Mastócitos/metabolismo , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/análise , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/metabolismo
7.
J Sep Sci ; 45(14): 2498-2507, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35561141

RESUMO

Cell membrane chromatography is an effective method for screening bioactive components acting on specific receptors in complex systems, which maintains the biological activity of the membrane receptors and improves screening efficiency. However, traditional cell membrane chromatography suffers from poor stability, resulting in a limited life span and low reproducibility, greatly limiting the application of this method. To address this problem, cyanuric chloride-decorated silica gel was used for the covalent immobilization of the cell membranes. Cyanuric chloride reacts with amino groups on the cell membranes and membrane receptors to form covalent bonds. In this way, the cell membranes are not easy to fall off. The column life of the cyanuric chloride-decorated epidermal growth factor receptor/cell membrane chromatography column was extended to more than 8 days, whereas the column life of the normal cell membrane chromatography column dropped sharply in the first 3 days. A cyanuric chloride-decorated epidermal growth factor receptor/cell membrane chromatography online HPLC-IT-TOF-MSn system was applied for screening drug leads from Trifolium pratense L. One potential drug lead, formononetin, which acts on the epidermal growth factor receptor, was screened. Our strategy of covalently immobilizing cell membrane receptors also improved the stability of cell membrane chromatography.


Assuntos
Medicamentos de Ervas Chinesas , Receptores ErbB , Membrana Celular/química , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Receptores ErbB/metabolismo , Reprodutibilidade dos Testes
8.
J Sep Sci ; 45(2): 456-467, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34729910

RESUMO

Chloroquine and hydroxychloroquine have been studied since the early clinical treatment of SARS-CoV-2 outbreak. Considering these two chiral drugs are currently in use as the racemate, high-expression angiotensin-converting enzyme 2 cell membrane chromatography was established for investigating the differences of two paired enantiomers binding to angiotensin-converting enzyme 2 receptor. Molecular docking assay and detection of SARS-CoV-2 spike pseudotyped virus entry into angiotensin-converting enzyme 2-HEK293T cells were also conducted for further investigation. Results showed that each single enantiomer could bind well to angiotensin-converting enzyme 2, but there were differences between the paired enantiomers and corresponding racemate in frontal analysis. R-Chloroquine showed better angiotensin-converting enzyme 2 receptor binding ability compared to S-chloroquine/chloroquine (racemate). S-Hydroxychloroquine showed better angiotensin-converting enzyme 2 receptor binding ability than R-hydroxychloroquine/hydroxychloroquine. Moreover, each single enantiomer was proved effective compared with the control group; compared with S-chloroquine or the racemate, R-chloroquine showed better inhibitory effects at the same concentration. As for hydroxychloroquine, R-hydroxychloroquine showed better inhibitory effects than S-hydroxychloroquine, but it slightly worse than the racemate. In conclusion, R-chloroquine showed better angiotensin-converting enzyme 2 receptor binding ability and inhibitory effects compared to S-chloroquine/chloroquine (racemate). S-Hydroxychloroquine showed better angiotensin-converting enzyme 2 receptor binding ability than R-hydroxychloroquine/hydroxychloroquine (racemate), while the effect of preventing SARS-CoV-2 pseudovirus from entering cells was weaker than R-hydroxychloroquine/hydroxychloroquine (racemate).


Assuntos
Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/efeitos dos fármacos , Cloroquina/química , Cloroquina/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Hidroxicloroquina/química , Hidroxicloroquina/farmacologia , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Antivirais/química , Antivirais/farmacologia , COVID-19/virologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/virologia , Células HEK293 , Humanos , Técnicas In Vitro , Simulação de Acoplamento Molecular , Receptores Virais/antagonistas & inibidores , Receptores Virais/química , Receptores Virais/efeitos dos fármacos , SARS-CoV-2/química , SARS-CoV-2/efeitos dos fármacos , Solventes , Estereoisomerismo , Pseudotipagem Viral , Internalização do Vírus , Tratamento Farmacológico da COVID-19
9.
Anal Chem ; 93(34): 11719-11728, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34415741

RESUMO

Membrane protein immobilization is particularly significant in in vitro drug screening and determining drug-receptor interactions. However, there are still some problems in the immobilization of membrane proteins with controllable direction and high conformational stability, activity, and specificity. Cell membrane chromatography (CMC) retains the complete biological structure of membrane proteins. However, conventional CMC has the limitation of poor stability, which results in its limited life span and low reproducibility. To overcome this limitation, we propose a method for the specific covalent immobilization of membrane proteins in cell membranes. We used the SNAP-tag as an immobilization tag fused to the epidermal growth factor receptor (EGFR), and Cys145 located at the active site of the SNAP-tag reacted with the benzyl group of O6-benzylguanine (BG). The SNAP-tagged EGFR was expressed in HEK293 cells. We captured the SNAP-tagged EGFR from the cell membrane suspension onto a BG-derivative-modified silica gel. Our immobilization strategy improved the life span and specificity of CMC and minimized loss of activity and nonspecific attachment of proteins. Next, a SNAP-tagged EGFR/CMC online HPLC-IT-TOF-MS system was established to screen EGFR antagonists from Epimedii folium. Icariin, magnoflorine, epimedin B, and epimedin C were retained in this model, and pharmacological assays revealed that magnoflorine could inhibit cancer cell growth by targeting the EGFR. This EGFR immobilization method may open up possibilities for the immobilization of other membrane proteins and has the potential to serve as a useful platform for screening receptor-binding leads from natural medicinal herbs.


Assuntos
Receptores ErbB , Tecnologia , Membrana Celular , Receptores ErbB/genética , Células HEK293 , Humanos , Reprodutibilidade dos Testes
10.
Anal Biochem ; 633: 114392, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34597615

RESUMO

Mas-related G-protein-coupled receptor X2 (MRGPRX2) has recently been reported to be associated with anaphylaxis. Detection of MRGPRX2 levels in human peripheral blood might serve as a powerful tool for predicting the predisposition of patients to anaphylactic reactions. For rapid measurement of MRGPRX2, we established a paper-based double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) using mouse monoclonal antibody and horseradish peroxidase (HRP)-labelled rabbit polyclonal antibody as capture antibody and detection antibody, respectively. We avoided chemical functionalization of the cellulose paper by introducing bovine serum albumin (BSA) to provide COOH and NH2 groups for covalent immobilization of the capture antibody. Through amide condensation, a two-layer immobilization strategy was applied with BSA-BSA and BSA-capture antibody networks as the first and second layers, respectively. This strategy improved the quantity, activity and stability of the immobilized antibody. We then established a paper-based ELISA to detect MRGPRX2 in human peripheral blood. Our method is less laborious, easier to implement, and more cost-effective than conventional ELISA, while offering similar sensitivity, specificity, and accuracy. Therefore, it could serve as an innovative clinical point-of-care diagnostic tool, especially in areas that lack advanced clinical equipment.


Assuntos
Anafilaxia/sangue , Ensaio de Imunoadsorção Enzimática , Proteínas do Tecido Nervoso/sangue , Papel , Receptores Acoplados a Proteínas G/sangue , Receptores de Neuropeptídeos/sangue , Anafilaxia/imunologia , Humanos , Proteínas do Tecido Nervoso/imunologia , Receptores Acoplados a Proteínas G/imunologia , Receptores de Neuropeptídeos/imunologia
11.
J Immunol ; 203(7): 1701-1714, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31484729

RESUMO

Intrathecal morphine infusion is often applied to treat chronic pain related to cancer and other conditions. However, persistent pain can be caused by nerve compression because of granuloma formation. In this study, a mouse model of morphine-induced granuloma formation by intrathecal catheterization morphine infusion into the atlanto-occipital membrane of the foramen magnum was established in wild-type mice, MrgprB2 mutant (MrgprB2-/-) mice, and in mast cell-deficient W-sash c-kit mutant (KitW-sh/W-sh) mice. Heat-related pain after surgery was performed to investigate the antipain effect of morphine. H&E staining and immunofluorescence staining of the spinal cord were applied to analyze the mechanism of granuloma formation. Morphine-induced mast cell degranulation was assessed by measuring the Ca2+ influx and mediator release. Anaphylactoid reactions were measured after s.c. morphine infusion to the paws. Chemokine release by mast cells was determined by Human XL Cytokine Array. Experiments with wild-type, MrgprB2 mutant, and mast cell-deficient W-sash c-kit mutant mice demonstrated that morphine activated mast cells and inflammatory cell aggregation through MrgprB2 in intrathecal infusion sites. The chemokine production of human mast cells demonstrated that granuloma formation is correlated with chemokines release. In addition, morphine activated mouse primary mast cells and de novo chemokine synthesis via the MRGPRX2 in human LAD2 cells. We concluded that granuloma formation during intrathecal morphine infusion was associated with MrgprB2/X2. Reducing MRGPRX2 potentially blocks morphine-induced side effects, including granuloma formation.


Assuntos
Granuloma/imunologia , Mastócitos/imunologia , Morfina/efeitos adversos , Dor/imunologia , Receptores Acoplados a Proteínas G/imunologia , Medula Espinal/imunologia , Animais , Quimiocinas/genética , Quimiocinas/imunologia , Forame Magno/imunologia , Forame Magno/patologia , Granuloma/patologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Injeções Espinhais , Masculino , Mastócitos/patologia , Camundongos , Camundongos Knockout , Morfina/farmacologia , Dor/tratamento farmacológico , Dor/patologia , Receptores Acoplados a Proteínas G/genética , Medula Espinal/patologia
12.
Anal Bioanal Chem ; 413(7): 1917-1927, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33506335

RESUMO

A novel stability-enhanced graphene quantum dot (GQD)-decorated epidermal growth factor receptor (EGFR) cell membrane chromatography was constructed to study the potential application of GQDs in bioaffinity chromatography, and to screen active components acting on EGFR from traditional Chinese medicine (TCM). The carboxyl groups on the surface of GQDs reacted with the amino groups of the amino-silica gel (SiO2-NH2) to form a covalent bond, thereby preparing the GQD-decorated silica gel (SiO2-GQDs). The EGFR cell membrane was further immobilized on the SiO2-GQDs through the same covalent binding method to obtain the GQD-decorated cell membrane stationary phase (SiO2-GQDs-CMSP). In this way, the cell membrane was firmly immobilized on the decorated silica carrier. The life span and stability of the GQD-decorated cell membrane chromatographic (SiO2-GQDs-CMC) column were both enhanced, and the optimal immobilization conditions of the EGFR cell membrane were also determined. This model was then verified by establishing a SiO2-GQDs-CMC online liquid chromatography-ion trap-time-of-flight (LC-IT-TOF) system to screen possible active components in Peucedanum praeruptorum Dunn. As a result, praeruptorin B (Pra-B) was screened out, and its inhibitory effect against EGFR cell growth was evaluated by the cell counting kit-8 (CCK-8) assay. Molecular docking assay was also conducted to further estimate the interaction between Pra-B and EGFR. Overall, this research indicated that GQDs may be a promising nanomaterial to be used in prolonging the life span of the CMC column, and Pra-B could be a potential EGFR inhibitor so as to treat cancer.


Assuntos
Apiaceae/metabolismo , Cromatografia/métodos , Receptores ErbB/análise , Pontos Quânticos , Antineoplásicos/análise , Membrana Celular/metabolismo , Química Farmacêutica/métodos , Desenho de Fármacos , Gefitinibe/análise , Grafite/química , Células HEK293 , Humanos , Medicina Tradicional Chinesa , Microscopia Eletrônica de Varredura , Simulação de Acoplamento Molecular , Neoplasias/metabolismo , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Anal Bioanal Chem ; 413(11): 2995-3004, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33608752

RESUMO

Traditional Chinese medicines played an important role in the treatment of COVID-19 in 2020. Ephedra sinica, one of the major constituent herbs of multi-component herbal formula, has been widely used to treat COVID-19 in China. However, its active components are still unclear. The objectives of this study are to screen and evaluate active components from the traditional Chinese medicine Ephedra sinica for the treatment of COVID-19. In our study, we established an ACE2/CMC bioaffinity chromatography model, and then developed an ACE2/CMC-HPLC-IT-TOF-MS system for the active compounds screening and identification from Ephedra sinica extract. We performed molecular docking and surface plasmon resonance (SPR) assays to assess the binding characteristics (binding mode and KD value). We used CCK-8 staining to assess the toxicity of screened compounds, and also used SARS-CoV-2 pseudovirus to observe the viropexis effect of screened compounds in ACE2h cells. In this current work, one fraction was fished out, separated and identified as ephedrine (EP), pseudoephedrine (PEP), and methylephedrine (MEP). Binding assays showed that the three compounds could bind with ACE2 in a special way to some amino acid residues, similar to the way SARS-CoV-2 bound with ACE2. Additionally, the three compounds, especially EP, can inhibit the entrance of SARS-CoV-2 spike pseudovirus into ACE2h cells because they can reduce the entrance ratio of pseudovirus in the pseudovirus model. Overall, the ACE2/CMC-HPLC-IT-TOF-MS system was established and verified to be suitable for ACE2-targeted bioactive compound screening. EP, PEP, and MEP with ACE2-binding features were screened out from Ephedra sinica, and acted as blockers inhibiting SARS-CoV-2 spike pseudovirus entering ACE2h cells.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas/farmacologia , Ephedra sinica , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , Antivirais/isolamento & purificação , COVID-19/metabolismo , China , Cromatografia Líquida de Alta Pressão , Descoberta de Drogas , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Ephedra sinica/química , Efedrina/análogos & derivados , Efedrina/isolamento & purificação , Efedrina/farmacologia , Células HEK293 , Humanos , Espectrometria de Massas , Simulação de Acoplamento Molecular , SARS-CoV-2/fisiologia , Internalização do Vírus/efeitos dos fármacos
14.
J Sep Sci ; 44(7): 1421-1429, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33491300

RESUMO

Adverse drug reactions of traditional Chinese medicine injection mainly manifested as pseudo-allergic reactions. In the present study, ginsenoside Rd, Ro, and Rg3 were identified as pseudo-allergic components in Shengmai injection by a high-expression Mas-related G protein-coupled receptor X2 cell membrane chromatography coupled online with high-performance liquid chromatography and mass spectrometry. Their pseudo-allergic activities were evaluated by in vitro and in vivo assay. The three compounds were further found to induce pseudo-allergic reaction through Mas-related G protein-coupled receptor X2. Therefore, we concluded that ginsenoside Rd, Ro and Rg3 may be potential allergens that cause pseudo-allergic reactions. This study might be helpful for the safe use of Shengmai injection.


Assuntos
Alérgenos/análise , Medicamentos de Ervas Chinesas/química , Receptores Acoplados a Proteínas G/biossíntese , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/administração & dosagem , Humanos , Espectrometria de Massas , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos C57BL
15.
J Sep Sci ; 43(13): 2571-2578, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32281296

RESUMO

Mas-related G protein-coupled receptor X2 was a mast cell-specific receptor mediating anaphylactoid reactions by activating mast cells degranulation, and it was also identified as a target for modulating mast cell-mediated anaphylactoid and inflammatory diseases. The anti-anaphylactoid drugs used clinically disturb the partial effect of partial mediators released by mast cells. The small molecule of Mas-related G protein-coupled receptor X2 specific antagonists may provide therapeutic action for the anaphylactoid and inflammatory diseases in the early stage. In this study, the Mas-related G protein-coupled receptor X2 high expression cell membrane chromatography was coupled online with liquid chromatography and mass spectrometry and successfully used to screen anti-anaphylactoid components from Magnolia biondii Pamp. Fargesin and pinoresinol dimethyl ether were identified as potential anti-anaphylactoid components. Bioactivity of these two components were investigated by ß hexosaminidase and histamine release assays on mast cells, and it was found that these two components could inhibit ß hexosaminidase and histamine release in a concentration-dependent manner. This Mas-related G protein-coupled receptor X2 high expression cell membrane chromatography coupled online with liquid chromatography and mass spectrometry system could be applied for screening potential anti-anaphylactoid components from natural medicinal herbs. This study also provided a powerful system for drug discovery in natural medicinal herbs.


Assuntos
Anafilaxia/tratamento farmacológico , Membrana Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Magnolia/química , Proteínas do Tecido Nervoso/antagonistas & inibidores , Extratos Vegetais/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Neuropeptídeos/antagonistas & inibidores , Anafilaxia/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Cromatografia Líquida , Medicamentos de Ervas Chinesas/química , Células HEK293 , Humanos , Espectrometria de Massas , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Medicina Tradicional Chinesa , Proteínas do Tecido Nervoso/metabolismo , Extratos Vegetais/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo
16.
J Sep Sci ; 42(14): 2351-2359, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31050150

RESUMO

Saposhnikoviae Radix, the dried root of Saposhnikoviae divaricata, is commonly used in the traditional Chinese anti-allergic preparations, like Bofutsusho-san and Yupingfeng granules. A high-expression Mas-related G protein-coupled receptor X2 cell membrane chromatography coupled online with high-performance liquid chromatography combined with an ion trap time-of-flight multistage mass spectrometry system was established and used for screening and identifying the anti-allergic components in Saposhnikoviae Radix. The system was validated for excellent specificity and suitability using the appropriate standards. Two retained fractions were obtained on the cell membrane chromatography column, and three main components were identified as prim-O-glucosylcimifugin, cimifugin, and 4'-O-ß-d-glucosyl-5-O-methylvisamminol. Next, the molecular docking study was conducted, which confirmed that these three components could effectively bind to MRGPRX2 through hydrogen bonds with its amino acid residues. Finally, histamine release assay was performed to investigate the bioactivities of prim-O-glucosylcimifugin, cimifugin, and 4'-O-ß-d-glucosyl-5-O-methylvisamminol. Results showed that these three components could exert anti-allergic effects by inhibiting the histamine release in a dose-dependent manner (from 10 to 100 µM). In conclusion, the high-expression Mas-related G protein-coupled receptor X2 cell membrane chromatography is an effective tool for discovering the anti-allergic components in Saposhnikoviae Radix.


Assuntos
Antialérgicos/análise , Apiaceae/química , Membrana Celular/química , Avaliação Pré-Clínica de Medicamentos , Proteínas do Tecido Nervoso/química , Receptores Acoplados a Proteínas G/química , Receptores de Neuropeptídeos/química , Antialérgicos/farmacologia , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Composição de Medicamentos , Histamina/metabolismo , Humanos , Espectrometria de Massas , Simulação de Acoplamento Molecular
17.
Biomed Chromatogr ; 33(9): e4569, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31050008

RESUMO

Marsdenia tenacissima, or Tongguanteng in Chinese, is a traditional Chinese herb and has a broad application in clinical practice for its pharmacological effects of treating asthma, pneumonia, tonsillitis, pharyngitis tumors, etc. However, few studies have reported the screening of the active components of this medicine for tumor therapy. In this work, a two-dimensional analytical system was developed to screen antagonists of epidermal growth factor receptor (EGFR) from M. tenacissima. A fraction was retained on the EGFR cell membrane chromatography (CMC) column, separated and identified as tenacissoside G (TG), tenacissoside H (TH) and tenacissoside I (TI) by two-dimensional HPLC-IT-TOF-MS. Molecular docking and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay were carried out to assess the activity of TS (including TG, TH and TI). Molecular docking results showed that the binding mode of TS on EGFR is similar to that of gefitinib. The MTT assay demonstrated that gefitinib and TS (especially TI) could inhibit the growth of EGFR highly expressed cell lines in a dose-dependent manner in the range of 5-50 µmol/L. In conclusion, the two-dimensional EGFR/CMC-HPLC-IT-TOF-MS system could be a useful approach in drug discovery from traditional Chinese medicines for searching for potential antitumor candidates.


Assuntos
Membrana Celular/metabolismo , Cromatografia de Afinidade/métodos , Medicamentos de Ervas Chinesas , Receptores ErbB/antagonistas & inibidores , Marsdenia/química , Células A549 , Cromatografia Líquida de Alta Pressão/métodos , Descoberta de Drogas , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/metabolismo , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular
18.
Eur J Immunol ; 47(11): 1949-1958, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28688196

RESUMO

Mast cells are unique immune cells that function as sentinels in host defence reactions, including immediate hypersensitivity responses and allergic responses. The mast cell-specific receptor named MAS-related G protein-coupled receptor X2 (MRGPRX2) triggers mast-cell degranulation, a key process in anaphylactoid reactions. It is widely observed that antimicrobials can induce pseudo-allergic reactions (i.e. IgE-independent mechanism) with symptoms ranging from skin inflammation to life-threatening systemic anaphylaxis. However, their direct involvement and the mechanisms underlying anaphylactoid reactions caused by antimicrobials have not been demonstrated. Structurally different antimicrobials were screened by Ca2+ imaging using MRGPRX2 overexpressing HEK293 cells. MRGPRX2 related anaphylactoid reactions induced by these components were investigated by body temperature drop and mast cell degranulation assays. We showed that MRGPRX2 is involved in allergic-like reactions to three types of antimicrobials in a dose-dependent manner. However, mast cells lacking the receptor show reduced degranulation. Furthermore, mice without MAS-related G protein-coupled receptor B2 (the orthologous gene of MRGPRX2) exhibited reduced substance-induced inflammation. Interestingly, ß-lactam and antiviral nucleoside analogues did not induce anaphylactic reactions, which were also observed in vitro. These results should alarm many clinicians that such drugs might induce anaphylactoid reactions and provide guidance on safe dosage of these drugs.


Assuntos
Anafilaxia/induzido quimicamente , Anti-Infecciosos/toxicidade , Degranulação Celular/efeitos dos fármacos , Hipersensibilidade a Drogas/imunologia , Mastócitos/efeitos dos fármacos , Proteínas do Tecido Nervoso/imunologia , Receptores Acoplados a Proteínas G/imunologia , Receptores de Neuropeptídeos/imunologia , Animais , Anti-Infecciosos/imunologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Electrophoresis ; 39(9-10): 1181-1189, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29359345

RESUMO

Traditional Chinese medicine (TCM) has been used for prevention and treatment of various diseases for many decades. TCM injection is a new dosage form, with incidence of anaphylactoid reactions increasing every year. In this study, the rat basophilic leukemia 2H3 (RBL-2H3) and laboratory of allergic disease 2 (LAD2) dual-mixed/CMC was established and was coupled with an HPLC-ESI-IT-TOF-MS system to identify the potential allergenic components in Haqing injection. Cinobufagin, piperine, osthole, praeruptorin A, and schizandrin A were screened from Haqing injection via this coupled system. Competitive binding assay showed piperine, praeruptorin A, and schizandrin A acting on MrgprX2 and cinobufagin and osthole act on the IgE receptor. The release of mediators of anaphylaxis results showed cinobufagin and osthole can cause anaphylactoid reactions by triggering the release of ß-hexosaminidase and histamine via IgE-R. Praeruptorin A and schizandrin A could promote the release of ß-hexosaminidase and histamine via MrgprX2 receptor. In summary, the dual-mixed/CMC model can significantly improve the efficiency of target component identification from a complex sample. When combined with competitive binding assay and validation of biological activities, this model enables accurate determination of the dual-target components, offering improved methods for quality control of TCM injections.


Assuntos
Alérgenos/análise , Medicamentos de Ervas Chinesas/análise , Leucemia/tratamento farmacológico , Espectrometria de Massas em Tandem/métodos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Hipersensibilidade , Medicina Tradicional Chinesa , Ratos
20.
Phytochem Anal ; 29(4): 341-350, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29573482

RESUMO

INTRODUCTION: Cell membrane chromatography (CMC), as a highly selective type of affinity chromatography, has been demonstrated as an effective method to screen bioactive components acting on specific receptor from a complicated biological system. OBJECTIVE: To review the recent research progress and the technical applications of these analytical methods using CMC combined with gas chromatography-mass spectrometry, (GC/MS) and liquid chromatography-mass spectrometry (LC/MS). METHODOLOGY: In this review, we briefly introduce the CMC offline GC/MS, CMC online GC/MS, CMC offline LC/MS, and CMC online LC/MS system. And the practical application of these technologies is also enumerated. Then the future of these technologies and research methods were discussed. RESULTS: Many bioactive components interacting with specific receptors have been screened and identified in traditional Chinese medicines. CONCLUSION: CMC technique has been combined with GC/MS and HPLC/MS and these combined systems have been successfully used to screen bioactive components acting on specific receptors from a complicated biological system.


Assuntos
Cromatografia Líquida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Medicina Tradicional Chinesa , Membrana Celular/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA