Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(5): e202212707, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36383643

RESUMO

Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self-assembly systems and materials. Herein, for the first time, we demonstrate a unique visible-light-switchable telluro-triazole/triazolium-based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo-derived ChB receptors and the halide anions (Cl- , Br- ) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis-bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans-monodentate receptors. In particular, the telluro-triazolium-based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB-assisted halide abstraction in a Friedel-Crafts alkylation benchmark reaction.

2.
Chem Asian J ; 16(23): 3886-3889, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34591366

RESUMO

A photo-switchable hetero-complementary quadruple H-bonding array, which consists of an azobenzene-derived ureidopyrimidinone (UPy) module (Azo-UPy) and a nonphotoactive diamidonaphthyridine (DAN) derivative (Napy-1), is constructed based on a reversible photo-locking approach. Upon UV (390 nm)/Vis (460 nm) light irradiations, photo-switchable quadruple H-bonded dimerization between Azo-UPy and Napy-1 can be achieved with exhibiting 4.8×104 -fold differences in binding strength (ON/OFF ratios). Furthermore, smart polymeric gels with unique photo-controlled macroscopic self-assembly behavior can be fabricated by introducing such quadruple H-bonding array as photo-regulable noncovalent interfacial connections.

3.
Chem Sci ; 12(5): 1762-1771, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34163937

RESUMO

Developing new photoswitchable noncovalent interaction motifs with controllable bonding affinity is crucial for the construction of photoresponsive supramolecular systems and materials. Here we describe a unique "photolocking" strategy for realizing photoswitchable control of quadruple hydrogen-bonding interactions on the basis of modifying the ureidopyrimidinone (UPy) module with an ortho-ester substituted azobenzene unit as the "photo-lock". Upon light irradiation, the obtained Azo-UPy motif is capable of unlocking/locking the partial H-bonding sites of the UPy unit, leading to photoswitching between homo- and heteroquadruple hydrogen-bonded dimers, which has been further applied for the fabrication of novel tunable hydrogen bonded supramolecular systems. This "photolocking" strategy appears to be broadly applicable in the rational design and construction of other H-bonding motifs with sufficiently photoswitchable noncovalent interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA