Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 190, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369486

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) has rapidly become the most common cause of chronic liver disease in children and adolescents, but its etiology remains largely unknown. Adrenarche is a critical phase for hormonal changes, and any disturbance during this period has been linked to metabolic disorders, including obesity and dyslipidemia. However, whether there is a causal linkage between adrenarche disturbance and the increasing prevalence of NAFLD in children remains unclear. RESULTS: Using the young female rat as a model, we found that the liver undergoes a transient slowdown period of growth along with the rise of adrenal-derived sex steroid precursors during adrenarche. Specifically blocking androgen actions across adrenarche phase using androgen receptor antagonist flutamide largely increased liver weight by 47.97% and caused marked fat deposition in liver, thus leading to severe NAFLD in young female rats. Conversely, further administrating nonaromatic dihydrotestosterone (DHT) into young female rats across adrenarche phase could effectively reduce liver fat deposition. But, administration of the aromatase inhibitor, formestane across adrenarche had minimal effects on hepatic de novo fatty acid synthesis and liver fat deposition, suggesting adrenal-derived sex steroid precursors exert their anti-NAFLD effects in young females by converting into active androgens rather than into active estrogens. Mechanistically, transcriptomic profiling and integrated data analysis revealed that active androgens converted from the adrenal sex steroid precursors prevent NAFLD in young females primarily by inactivating hepatic sterol regulatory element-binding transcription factor 1 (Srebf1) signaling. CONCLUSIONS: We firstly evidenced that adrenarche-accompanied rise of sex steroid precursors plays a predominant role in preventing the incidence of NAFLD in young females by converting into active androgens and inactivating hepatic Srebf1 signaling. Our novel finding provides new insights into the etiology of NAFLD and is crucial in developing effective prevention and management strategies for NAFLD in children.


Assuntos
Adrenarca , Hepatopatia Gordurosa não Alcoólica , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Criança , Feminino , Humanos , Ratos , Androgênios , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Esteroides , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
2.
Biochem Biophys Res Commun ; 727: 150319, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38963983

RESUMO

Castration promotes subcutaneous fat deposition that may be associated with metabolic adaptations in the liver. However, fatty acid composition, abundance, and metabolic characteristics of the liver after castration are not fully understood. Our results showed that surgical castration significantly reduced water and food intake, reduced liver weight, and induced liver inflammation in mice. Transcriptome analyses revealed that castration enhanced fatty acid metabolism, particularly that of arachidonic and linoleic acids metabolism. Gas chromatography-mass spectrometry analysis revealed that castration altered the composition and relative abundance of fatty acids in the liver. The relative abundances of arachidonic and linoleic acids were significantly decreased in 4-week-old castrated mice. Analysis of fatty acid synthesis- and metabolism-related genes revealed that castration enhanced the transcription of fatty acid synthesis- and oxidation-related genes. Analyzing the level of key enzymes in the ß-oxidation and tricarboxylic acid cycle pathways of fatty acids in mitochondria, we found that castration enhanced the ß-oxidation of fatty acids in mitochondria, and also enhanced the protein level of the rate-limiting enzyme in the tricarboxylic acid cycle pathway, isocitrate dehydrogenase 2. These results comprehensively clarify metabolic changes in liver fatty acids after castration in mice of different ages and provide a reference for understanding castration-induced fat deposition from the perspective of liver fatty acid metabolism in male mice.

3.
FASEB J ; 37(5): e22898, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37022664

RESUMO

Nonalcoholic fatty liver disease (NAFLD), which leads to insulin resistance, steatosis, and even hepatocellular carcinoma, is the most common chronic liver disease worldwide, however, effective treatment is still lacking. This study determined the role of liver FGF21 and the mechanisms underlying the protective effects of time-restricted feeding (TRF) in NAFLD. FGF21 liver knockout (FGF21 LKO) mice and C57BL/6 wild-type (WT) mice were fed either a normal or a high-fat diet (HFD) for 16 weeks. Mice with diet-induced obesity (DIO) were also used. The mice were fed either ad libitum or in a time-restricted manner. Serum FGF21 levels were significantly increased after 16 weeks of TRF. TRF prevented body weight gain, improved glucose homeostasis, and protected against high-fat diet-induced hepatosteatosis and liver damage. The expression of genes related to liver lipogenesis and inflammation was reduced in TRF mice, but the expression of genes involved in fatty acid ß-oxidation was increased. However, those beneficial effects of TRF were blunted in the FGF21 LKO mice. Moreover, TRF promoted improvements in insulin sensitivity and liver damage in DIO mice. Our data show that liver FGF21 signaling was involved in the effect of TRF on high-fat diet-induced fatty liver.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Dieta Hiperlipídica , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
4.
J Nutr ; 153(6): 1753-1761, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062485

RESUMO

BACKGROUND: More than 30% of reproductive-age women are obese or overweight. Obesity and exposure to a high-fat diet (HFD) detrimentally affect endometrial development and embryo implantation. We previously reported that time-restricted feeding (TRF) improved ovarian follicular development, but whether and how TRF modulates embryo implantation are poorly understood. OBJECTIVE: We investigated the effect of TRF on embryo implantation. METHODS: In TRF group, mice had 10 h of food free access from 9 pm to 7 am, and fed a normal diet or a HFD. Tail vein injection of Chicago blue dye was used to examine embryo implantation sites at day 5.5 (D5.5) of pregnancy. Serum collected at D0.5 and D4.5 of pregnancy was used to examine the level of estradiol (E2) and progesterone. Uterine estrogen receptor (ER) and progesterone receptor levels and their targeted aquaporins (AQPs) were measured. LC-MS was used to analyze bile acid (BA) composition, and primary hepatocytes were used to test the effects of BA on the expression level of SULT1E1, a key enzyme in estrogen inactivation and elimination. RESULTS: We found that TRF prevented HFD-induced embryo loss and alleviated the defect in luminal closure on D4.5 of pregnancy. The cyclic changes of E2 level were lost in mice fed ad libitum but not in TRF mice on the HFD. The HFD increased ER-α expression and transcriptional activity, which induced AQP3 and AQP5 expression on D4.5 of pregnancy. TRF prevented the negative effect of the HFD on uterine luminal closure. Furthermore, in vitro and in vivo results showed that BA suppressed estrogen degradation by activating liver SULT1E1 expression. CONCLUSIONS: Our findings demonstrated that TRF prevented HFD-induced defects in luminal closure, thereby improving embryonic implantation, and provide novel insights into the effects of dietary intervention on obesity and associated infertility.


Assuntos
Dieta Hiperlipídica , Receptor alfa de Estrogênio , Gravidez , Camundongos , Feminino , Animais , Receptor alfa de Estrogênio/genética , Obesidade , Implantação do Embrião/fisiologia , Estrogênios , Camundongos Endogâmicos C57BL
5.
Fish Shellfish Immunol ; 134: 108584, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36740083

RESUMO

Toll-like receptor 18 (TLR18), a non-mammalian TLR, has been believed to play an important role in anti-bacterial immunity of teleost fishes. UNC93B1 is a classical molecular chaperone that mediates TLRs transport from endoplasmic reticulum to the located membrane. However, TLR18-mediated signal transduction mechanism and the regulatory effect of UNC93B1 to TLR18 are still unclear in teleost fishes. In this study, the coding sequences of TLR18 and UNC93B1 were cloned from Schizothorax prenanti, named spTLR18 and spUNC93B1, respectively. The spTLR18 and spUNC93B1 are 2583 bp and 1878 bp in length, encode 860 and 625 amino acids, respectively. The spTLR18 widely expressed in various tissues with the highest expression level in liver. After stimulation of Aeromonas hydrophila, lipopolysaccharide (LPS) and Poly(I:C), the expression levels of spTLR18 were significantly increased in spleen and head kidney. The spTLR18 located in the cell membrane, while spUNC93B1 located in the cytoplasm. Luciferase and overexpression analysis showed that spTLR18 activated NF-κB and type I IFN signal pathways, and spTLR18-mediated NF-κB activation might depend on the adaptor molecule MyD88. Besides, spUNC93B1 positively regulates spTLR18-mediated NF-κB signal. Our study first uncovers TLR18-UNC93B1-mediated signal transduction mechanism, which contributes to the understanding of TLR signaling pathway in teleost fishes.


Assuntos
Cyprinidae , NF-kappa B , Animais , NF-kappa B/metabolismo , Imunidade Inata , Proteínas de Peixes/genética , Filogenia , Receptores Toll-Like/genética , Transdução de Sinais
6.
Gen Comp Endocrinol ; 335: 114232, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36774983

RESUMO

Small integral membrane protein 20 (SMIM20) could generate two main peptides, PNX14 and PNX20, which participate in multiple biological roles such as reproduction, inflammation and energy metabolism in mammals. However, little is known about their physiological functions in non-mammalian vertebrates. Using chicken (c-) as an animal model, we found cSMIM20 was moderately expressed in adipose tissues, and its expression was gradually increased during the differentiation of chicken preadipocytes, suggesting that it may play an important role in chicken adipogenesis. Further research showed cPNX14 could facilitate the differentiation of chicken preadipocytes into mature adipocytes by enhancing expression of adipogenic genes including PPARγ, CEBPα and FABP4, and promoting the formation of lipid droplets. This pro-adipogenic effect of cPNX14 was completely attenuated by Epac-specific and ERK inhibitor. Interestingly, cPNX20 failed to regulate the adipogenic genes and lipid droplet content. Collectively, our findings reveal that cPNX14 but not cPNX20 can serve as a novel adipogenesis mediator by activating the Epac-ERK signaling pathway in chickens.


Assuntos
Adipócitos , Proteínas Aviárias , Galinhas , Proteínas de Membrana , Animais , Adipócitos/metabolismo , Adipogenia , Tecido Adiposo/metabolismo , Diferenciação Celular , Galinhas/metabolismo , Mamíferos , Transdução de Sinais , Proteínas Aviárias/metabolismo , Proteínas de Membrana/metabolismo
7.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768630

RESUMO

Dysfunctions of the ovaries and adrenal glands are both evidenced to cause aberrant adipose tissue (AT) remodeling and resultant metabolic disorders, but their distinct and common roles are poorly understood. In this study, through biochemical, histological and RNA-seq analyses, we comprehensively explored the mechanisms underpinning subcutaneous (SAT) and visceral adipose tissue (VAT) remodeling, in response to ovariectomy (OVX) versus adrenalectomy (ADX) in female mice. OVX promoted adipocyte differentiation and fat accumulation in both SAT and VAT, by potentiating the Pparg signaling, while ADX universally prevented the cell proliferation and extracellular matrix organization in both SAT and VAT, likely by inactivating the Nr3c1 signaling, thus causing lipoatrophy in females. ADX, but not OVX, exerted great effects on the intrinsic difference between SAT and VAT. Specifically, ADX reversed a large cluster of genes differentially expressed between SAT and VAT, by activating 12 key transcription factors, and thereby caused senescent cell accumulation, massive B cell infiltration and the development of selective inflammatory response in SAT. Commonly, both OVX and ADX enhance circadian rhythmicity in VAT, and impair cell proliferation, neurogenesis, tissue morphogenesis, as well as extracellular matrix organization in SAT, thus causing dysfunction of adipose tissues and concomitant metabolic disorders.


Assuntos
Tecido Adiposo , Adrenalectomia , Camundongos , Feminino , Animais , Humanos , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Adiposidade , Ovariectomia/efeitos adversos , Gordura Intra-Abdominal/metabolismo , Gordura Subcutânea/metabolismo
8.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108077

RESUMO

Inhibins suppress the FSH production in pituitary gonadotrope cells by robustly antagonizing activin signaling by competitively binding to activin type II receptors (ACTR II). The binding of inhibin A to ACTR II requires the presence of its co-receptor, namely, betaglycan. In humans, the critical binding site for betaglycan to inhibin A was identified on the inhibin α subunit. Through conservation analysis, we found that a core 13-amino-acid peptide sequence within the betaglycan-binding epitope on human inhibin α subunit is highly conserved across species. Based on the tandem sequence of such a conserved 13-amino-acid betaglycan-binding epitope (INHα13AA-T), we developed a novel inhibin vaccine and tested its efficacy in promoting female fertility using the female rat as a model. Compared with placebo-immunized controls, INHα13AA-T immunization induced a marked (p < 0.05) antibody generation, enhanced (p < 0.05) ovarian follicle development, and increased ovulation rate and litter sizes. Mechanistically, INHα13AA-T immunization promoted (p < 0.05) pituitary Fshb transcription and increased (p < 0.05) serum FSH and 17ß-estradiol concentrations. In summary, active immunization against INHα13AA-T potently increased FSH levels, ovarian follicle development, ovulation rate and litter sizes, thus causing super-fertility in females. Therefore, immunization against INHα13AA is a promising alternative to the conventional approach of multiple ovulation and super-fertility in mammals.


Assuntos
Ativinas , Inibinas , Ratos , Feminino , Humanos , Animais , Inibinas/metabolismo , Receptores de Ativinas , Peptídeos , Imunização , Vacinação , Hormônio Foliculoestimulante/farmacologia , Fertilidade , Aminoácidos , Mamíferos/metabolismo
9.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834368

RESUMO

Increased glucocorticoid (GC) levels act as a master contributor to central obesity in estrogen-depleted females; however, what factors cause their increased GC production is unclear. Given (1) liver fibroblast growth factor 21 (FGF21) and GCs regulate each other's production in a feed-forward loop, and (2) circulating FGF21 and GCs are parallelly increased in menopausal women and ovariectomized mice, we thus hypothesized that elevation of hepatic FGF21 secretion causes increased GGs production in estrogen-depleted females. Using the ovariectomized mice as a model for menopausal women, we found that ovariectomy (OVX) increased circulating corticosterone levels, which in turn increased visceral adipose Hsd11b1 expression, thus causing visceral obesity in females. In contrast, liver-specific FGF21 knockout (FGF21 LKO) completely reversed OVX-induced high GCs and high visceral adipose Hsd11b1 expression, thus abrogating OVX-induced obesity in females. Even though FGF21 LKO failed to rescue OVX-induced dyslipidemia, hepatic steatosis, and insulin resistance. What's worse, FGF21 LKO even further exacerbated whole-body glucose metabolic dysfunction as evidenced by more impaired glucose and pyruvate tolerance and worsened insulin resistance. Mechanically, we found that FGF21 LKO reduced circulating insulin levels, thus causing the dissociation between decreased central obesity and the improvement of obesity-related metabolic syndromes in OVX mice. Collectively, our results suggest that liver FGF21 plays an essential role in mediating OVX-induced central obesity by promoting GC production. However, lack of liver FGF21 signaling reduces insulin production and in turn causes the dissociation between decreased central obesity and the improvement of obesity-related metabolic syndromes, highlighting a detrimental role for hepatic FGF21 signals in mediating the development of central obesity but a beneficial role in preventing metabolic abnormality from further exacerbation in estrogen-depleted females.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Humanos , Feminino , Camundongos , Animais , Corticosterona/metabolismo , Resistência à Insulina/genética , Obesidade Abdominal/metabolismo , Síndrome Metabólica/genética , Síndrome Metabólica/complicações , Camundongos Knockout , Fígado/metabolismo , Obesidade/genética , Obesidade/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Glucocorticoides/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Estrogênios/metabolismo , Ovariectomia/efeitos adversos , Dieta Hiperlipídica
10.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902252

RESUMO

Spexin2 (SPX2), a paralog of SPX1, is a newly identified gene in non-mammalian vertebrates. Limited studies in fish have evidenced its important role in food intake and energy balance modulation. However, little is known about its biological functions in birds. Using the chicken (c-) as a model, we cloned the full-length cDNA of SPX2 by using RACE-PCR. It is 1189 base pair (bp) in length and predicted to generate a protein of 75 amino acids that contains a 14 amino acids mature peptide. Tissue distribution analysis showed that cSPX2 transcripts were detected in a wide array of tissues, with abundant expression in the pituitary, testis, and adrenal gland. cSPX2 was also observed to be ubiquitously expressed in chicken brain regions, with the highest expression in the hypothalamus. Its expression was significantly upregulated in the hypothalamus after 24 or 36 h of food deprivation, and the feeding behavior of chicks was obviously suppressed after peripheral injection with cSPX2. Mechanistically, further studies evidenced that cSPX2 acts as a satiety factor via upregulating cocaine and amphetamine regulated transcript (CART) and downregulating agouti-related neuropeptide (AGRP) in hypothalamus. Using a pGL4-SRE-luciferase reporter system, cSPX2 was demonstrated to effectively activate a chicken galanin II type receptor (cGALR2), a cGALR2-like receptor (cGALR2L), and a galanin III type receptor (cGALR3), with the highest binding affinity for cGALR2L. Collectively, we firstly identified that cSPX2 serves as a novel appetite monitor in chicken. Our findings will help clarify the physiological functions of SPX2 in birds as well as its functional evolution in vertebrates.


Assuntos
Galinhas , Hipotálamo , Neuropeptídeos , Hormônios Peptídicos , Animais , Masculino , Galinhas/genética , Galinhas/metabolismo , Galanina/metabolismo , Hipotálamo/metabolismo , Neuropeptídeos/metabolismo , Receptores de Galanina/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo
11.
BMC Genomics ; 23(1): 281, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395713

RESUMO

BACKGROUND: Egg production is one of the most important economic traits in the poultry industry. The hypothalamic-pituitary-gonadal (HPG) axis plays an essential role in regulating reproductive activities. However, the key genes and regulatory pathways within the HPG axis dominating egg production performance remain largely unknown in ducks. RESULTS: In this study, we compared the transcriptomic profiles of the HPG-related tissues between ducks with high egg production (HEP) and low egg production (LEP) to reveal candidate genes and regulatory pathways dominating egg production. We identified 543, 759, 670, and 181 differentially expressed genes (DEGs) in the hypothalamus, pituitary, ovary stroma, and F5 follicle membrane, respectively. Gene Ontology (GO) analysis revealed that DEGs from four HPG axis-related tissues were enriched in the "cellular component" category. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the neuroactive ligand-receptor interaction pathway was significantly enriched based on DEGs commonly identified in all four HPG axis-related tissues. Gene expression profiles and Protein-Protein Interaction (PPI) network were performed to show the regulatory relationships of the DEGs identified. Five DEGs encoding secreted proteins in the hypothalamus and pituitary have interaction with DEGs encoding targeted proteins in the ovary stroma and F5 follicle membrane, implying that they were these DEGs might play similar roles in the regulation of egg production. CONCLUSIONS: Our results revealed that neuroactive ligand-receptor interaction pathway and five key genes(VEGFC, SPARC, BMP2, THBS1, and ADAMTS15) were identified as the key signaling pathways and candidate genes within the HPG axis responsible for different egg production performance between HEP and LEP. This is the first study comparing the transcriptomic profiles of all HPG axis-related tissues in HEP and LEP using RNA-seq in ducks to the best of our knowledge. These data are helpful to enrich our understanding of the classical HPG axis regulating the egg production performance and identify candidate genes that can be used for genetic selection in ducks.


Assuntos
Patos , Transcriptoma , Animais , Patos/genética , Patos/metabolismo , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Ligantes , Ovário/metabolismo
12.
BMC Genomics ; 23(1): 279, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392803

RESUMO

BACKGROUND: Salivary gland (SMG) degeneration and dysfunction are common symptoms that occur after sex hormone deprivation, but the underlying mechanisms remain largely unknown. Additionally, immunocastration, which causes drop of sex hormones, has been developed as an alternative to surgical castration, however whether it exerts similar effects as surgical castration on the salivary glands is unknown. Through histological and RNA-seq analysis, we assessed changes in morphology and transcriptome of SMG in response to immunocastration (IM) versus surgical castration (bilateral orchiectomy, ORC). RESULTS: Compared to entire males (EM), ORC caused severe degeneration of SMG in rats, as evidenced by both decreased (P < 0.01) SMG weight and organ index, and by decreased (P < 0.01) quantity of SMG acini and ducts. IM had minimal effects (P > 0.05) on SMG weight and organ index, but it still caused degeneration (P < 0.05) of the acini and ducts. Even though, the quantity of both SMG acini and ducts was much higher (P < 0.001) in IM than in ORC. Functional enrichment analysis of the common regulated genes by ORC/IM revealed disrupted epithelial cell development, angiogenesis, anatomical structure morphogenesis and enhanced cell death are associated with SMG degeneration in deprivation of androgens. Integrated data analysis shown that there existed a selective hyperfunction of SMG ribosome and mitochondrion in ORC but not in IM, which might be associated with more severe degeneration of SMG in ORC than in IM. CONCLUSIONS: Our findings suggested that both surgical castration and immunocastration caused SMG degeneration by disrupting epithelial cell development, angiogenesis, anatomical structure morphogenesis and enhancing cell death. But, surgical castration selectively induced hyperfunction of SMG ribosome and mitochondrion, thus causing more severe degeneration of SMG than immunocastration.


Assuntos
Orquiectomia , Glândula Submandibular , Androgênios , Animais , Masculino , RNA-Seq , Ratos , Ratos Sprague-Dawley , Glândula Submandibular/metabolismo
13.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36233045

RESUMO

A follicle stimulating hormone (FSH) is widely used in the assisted reproduction and a synthetic peptide corresponding to a receptor binding region of the human (h) FSH-ß-(34−37) (TRDL) modulated reproduction. Furthermore, a 13-amino acid sequence corresponding to hFSH-ß-(37−49) (LVYKDPARPKIQK) was recently identified as the receptor binding site. We hypothesized that the synthetic peptides corresponding to hFSH-ß-(37−49) and hFSH-ß-(34−49), created by merging hFSH-ß-(34−37) and hFSH-ß-(37−49), modulate the reproductive functions, with the longer peptide being more biologically active. In male or female prepubertal mice, a single injection of 200 µg/g BW ip of hFSH-ß-(37−49) or hFSH-ß-(34−49) hastened (p < 0.05) puberty, whereas the same treatments given daily for 4 d promoted (p < 0.05) the gonadal steroidogenesis and gamete formation. In addition of either peptide to the in vitro cell cultures, promoted (p < 0.05) the proliferation of primary murine granulosa cells and the estradiol production by upregulating the expression of Ccnd2 and Cyp19a1, respectively. In adult female mice, 200 µg/g BW ip of either peptide during diestrus antagonized the FSH-stimulated estradiol increase and uterine weight gain during proestrus. Furthermore, hFSH-ß-(34−49) was a more potent (p < 0.05) reproductive modulator than hFSH-ß-(37−49), both in vivo and in vitro. We concluded that hFSH-ß-(37−49) and especially hFSH-ß-(34−49), have the potential for reproductive modulation.


Assuntos
Hormônio Foliculoestimulante Humano , Subunidade beta do Hormônio Folículoestimulante , Animais , Estradiol , Feminino , Hormônio Foliculoestimulante/metabolismo , Humanos , Masculino , Camundongos , Fragmentos de Peptídeos/metabolismo , Peptídeos/farmacologia
14.
Fish Shellfish Immunol ; 98: 218-223, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31935552

RESUMO

Quantification real-time PCR (qRT-PCR) is a common method in analysis of gene expression, but the stable reference genes for the normalization analysis have not been appreciated before identifying expression pattern of genes in teleost fishes. In this study, we selected eight candidate reference genes (18S, Actin, EF-1α, 40S, B2M, TUBA, UBCE and GAPDH) basing on transcriptome analysis and the traditional housekeeping genes, and analyzed the stability of the reference genes in spleen, head kidney and head kidney leukocytes (HKL) after pathogen challenge in Schizothorax prenanti (S. prenanti). Three common programs (geNorm, NormFinder and Bestkeeper) were used to evaluate the stability of the candidate reference genes. Two reference genes, Actin and EF-1α presented higher stability, while 18S and GAPDH were the lower stable genes, both in in vitro and in vivo. An important immune gene, toll-like receptor 22a (TLR22a), was selected to validate the stability of the proposed reference genes (Actin and EF-1α) across different experiment treatments. The results reveal that Actin and EF-1α are quite suitable reference genes for the normalization analysis. Otherwise, using the most stable gene Actin to validate the reliable of transcriptome data showed the high correlation between the fold change of transcriptome data and qRT-PCR data. In conclusion, our study not only acquired the suitable reference gene for the qRT-PCR assay under specific experiment condition, but also provided a comprehensive method to evaluate and validate the reference gene based on transcriptome analysis in teleost fishes.


Assuntos
Cyprinidae/genética , Perfilação da Expressão Gênica/normas , Genes Essenciais , Reação em Cadeia da Polimerase em Tempo Real/normas , Actinas/genética , Animais , Proteínas de Peixes/genética , Fator 1 de Elongação de Peptídeos/genética , Padrões de Referência , Reprodutibilidade dos Testes , Receptores Toll-Like/genética , Transcriptoma
15.
Fish Shellfish Immunol ; 97: 235-247, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31863902

RESUMO

Lipopolysaccharide (LPS) is a classical pathogen-associated molecular pattern that can trigger strong inflammatory response mainly by TLR4-mediated signaling pathway in mammals, but the molecular mechanism of anti-LPS immunity is unclear in teleost fishes. In this study, we analyzed the gene expression features based on transcriptome analysis in Schizothorax prenanti (S. prenanti), after stimulation with two sources of LPS from Aeromonas hydrophila and Escherichia coli (Ah. LPS and Ecoli. LPS). 921 different expression genes (DEGs) after Ah. LPS stimulation and 975 DEGs after Ecoli.LPS stimulation were acquired, but only 706 and 750 DEGs were successfully annotated into the databases, respectively. Both of two groups of DGEs were significantly enriched into immune-related pathways by KEGG enrichment analysis, such as "Toll-like receptor signaling pathway", "Cytokine-cytokine receptor interaction" and "JAK-STAT signaling pathway". The annotated DEGs from Ah. LPS and Ecoli. LPS stimulation shared 470 DEGs, including 88 immune-related DEGs (IRGs) identified mainly by KEGG enrichment to immune-related signaling pathways. Among the shared IRGs, four pattern-recognition genes (TLR5, TLR25, PTX3 and C1q) were induced with high expression foldchange, and IFN-γ and relative genes also showed higher expression levels than control. Meanwhile, inflammatory signals were highlighted by upregulating the expression of inflammatory cytokines (IL-1ß, IL-10 and IL-8). Moreover, some non-shared IRGs (including TLR2 and TLR4) were identified, suggesting that different sources of LPS own different potentials for the induction of immune gene expression. In conclusion, TLR5, TLR25, PTX3 and C1q may function as the sensing molecules to catch the invasion signal of LPS. The anti-LPS immune response may be involved into TLR25/TLR5-mediated inflammatory signals that regulate subsequently the activation of PTX3/C1q-modulated complement pathway upon the induction of PTX3 expression, and the crosstalk between IFN-γ and TLR signaling pathways in teleost fishes. This study will contribute to further explore the molecular mechanism of LPS-induced immunity in teleost fishes.


Assuntos
Cyprinidae/genética , Cyprinidae/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Imunidade Inata/genética , Lipopolissacarídeos/efeitos adversos , Substâncias Protetoras/farmacologia , Aeromonas hydrophila/fisiologia , Animais , Escherichia coli/fisiologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
16.
J Sci Food Agric ; 100(1): 92-101, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31435952

RESUMO

BACKGROUND: Oyster polypeptides have various biofunctions, such as anti-cancer and anti-oxidative stress, but whether it has the protective effects to primary ovarian failure (POF) remains poorly understand. To address this issue, daily gavage of oyster polypeptides was performed to investigate their protective effect, basing on d-galactose-induced POF model in C57BL/6 female mice. RESULTS: Oyster polypeptides restored the irregular estrous cycles and the abnormal serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and progesterone (P) levels as well as the decreased mRNA expression level of Amh that were induced by d-galactose. The follicle development of POF mice was improved by increasing the primordial follicle ratio and decreasing the atretic follicle number after oral administration of oyster polypeptides. Moreover, in the oyster polypeptides treated mice, the total superoxide dismutase (T-SOD) activity was significantly increased, while the malondialdehyde levels were significantly decreased. The mRNA expression levels of stress-related genes (SOD2, SIRT1 and FOXO3a) were remarkably up-regulated after d-galactose induction, but the up-regulation was weakened or disappeared by the gavage of oyster polypeptides. In addition, oyster polypeptides treatment also reduced the apoptosis of the ovarian granulosa cells and down-regulated the mRNA expression levels of apoptosis-related genes (p53 and Bad but not Bcl-2). CONCLUSION: This study reveals that oyster polypeptides may protect ovary against d-galactose-induced POF by their anti-oxidative stress activity to rescue d-galactose-induced ovarian oxidative damage and therefore to prevent ovarian cells apoptosis, thereby tipping the abnormality trigged by POF to get close to the normal levels. © 2019 Society of Chemical Industry.


Assuntos
Ostreidae/química , Peptídeos/administração & dosagem , Insuficiência Ovariana Primária/tratamento farmacológico , Substâncias Protetoras/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Feminino , Galactose/efeitos adversos , Humanos , Hormônio Luteinizante/metabolismo , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/metabolismo , Progesterona/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
17.
Am J Physiol Endocrinol Metab ; 316(1): E121-E134, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376348

RESUMO

Hypothalamic neurons detect changes in circulating hormones such as leptin and insulin and put forward outputs to sustain energy and glucose homeostasis. Because leptin and insulin receptors colocalize in ~40-60% of neurons in the hypothalamus, we characterized the metabolic phenotype of mice with selective deletion of the insulin receptor (InsR) in LepR cells. LRΔInsR mice presented no difference in body weight and insulin levels but increased fat mass. In the light phase, LRΔInsR mice exhibited increased food intake, locomotor activity, carbon dioxide production, and respiratory exchange rate. These mice showed reduced fat oxidation and reduced expression of cluster of differentiation 36 and AMP-activated protein kinase-α1 in the liver, increased glucose oxidation in the light phase, and overall reduced basal glucose levels. To verify the impact of InsR deletion in LepR cells in obesity, we generated ob/ ob InsRfl, ob/ ob LRcre, and ob/ ob LRΔInsR mice. The ob/ ob LRΔInsR mice had higher body weight, fat mass, and expression of genes related to fat metabolism in the liver. No difference in food intake despite increased neuropeptide Y and agouti-related peptide expression, and no difference in energy expenditure, fat, or glucose oxidation was found in ob/ ob LRΔInsR compared with LRcre or LRΔInsR controls. Remarkably, basal glucose levels were reduced, and the expression of genes associated with glucose metabolism in the liver was higher. Insulin signaling in LepR cells is required for the proper fat and glucose oxidation. These effects are independent of leptin given that the leptin-deficient ob/ ob LRΔInsR mice also presented reduced glycemia and higher adiposity. The mechanisms underlying these responses remain to be unveiled.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Receptor de Insulina/genética , Receptores para Leptina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antígenos CD36/metabolismo , Metabolismo Energético , Feminino , Deleção de Genes , Homeostase , Hiperinsulinismo/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Obesos
18.
Fish Shellfish Immunol ; 95: 81-92, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31610291

RESUMO

Mammal Toll-like receptor 5 (TLR5) can directly recognize bacterial flagellin, initiate the inflammatory signaling cascades and trigger body immune system to clear the "non-self" substances. In teleosts, TLR5 has presented more complexes not only in increasing the molecular types, but also in elevating the functional diversity. In this study, we identified two TLR5 family members in Schizothorax prenanti, named as spTLR5-1 and spTLR5-2. The complete coding sequence (CDS) of spTLR5-1 is 2622 bp, encoding 873 amino acids, while the complete CDS of spTLR5-2 is 2640 bp, encoding 879 amino acids. Phylogenetic analysis showed that spTLR5-1 and spTLR5-2 were clustered to the TLR5 of schizothorax richardsonii and Cyprinus carpio respectively. The 3D structure analysis exhibited that the α-helix, ß-sheet, and the ligand binding site of spTLR5-1, spTLR5-2 and human TLR5 have large differences. The spTLR5-1 and spTLR5-2 had extensively expressed in various tissues, including the higher expression in liver, spleen and head kidney. Both the expression levels of spTLR5-1 and spTLR5-2 were significantly up-regulated after Aeromonas hydrophila (A. hydrophila) challenge. And, the downstream genes, such as AP-1, IKK-α, NF-kB, IL-1ß, IL-8 and TNF-α, were also significantly up-regulated after A. hydrophila challenge. Apart from that, the luciferase reporter assay demonstrated that the co-transfection of spTLR5-1 or spTLR5-2 into HEK293T cells showed the significantly increased NF-kB luciferase activity after flagellin stimulation. In conclusion, our results reveal that both two molecular types of fish TLR5 may commonly mediate the recognition of flagellin and the activation of the downstream inflammatory signaling molecules.


Assuntos
Carpas/genética , Proteínas de Peixes/genética , Receptor 5 Toll-Like/genética , Aeromonas hydrophila , Sequência de Aminoácidos , Animais , Carpas/imunologia , Clonagem Molecular , Proteínas de Peixes/imunologia , Flagelina/imunologia , Células HEK293 , Humanos , Imunidade Inata , Estrutura Molecular , Filogenia , Alinhamento de Sequência , Transdução de Sinais , Receptor 5 Toll-Like/imunologia
19.
Fish Shellfish Immunol ; 84: 816-824, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30393178

RESUMO

Schizothorax prenanti (S. prenanti), an important species of economical fish in Southwest China, is susceptible to Aeromonas hydrophila (Ah). To understand the immune response to Ah, the transcriptome profiling of spleen of S. prenanti was analyzed after Ah infection. A total of 6, 213 different expression genes (DEGs) were obtained, including 3, 066 up-regulated DEGs and 3, 147 down-regulated DEGs. These DEGs were annotated by KEGG and GO databases, so that the immune-related DEGs (IRDs) can be identified and classified. Then, the interesting IRDs were screened to build heat map, and the reliability of the transcriptome data was validated by qPCR. In order to clarify the mechanism of signal transduction in the anti-bacterial immunity, the signaling pathway initiated by TLRs was predicted. In this pathway, TLR25 and TLR5 mediate the NF-κB and AP-1 signals via MyD88-dependent pathway. Meanwhile, the type I IFN (IFNα/ß) induced by IRF1 and IRF3/7 may play an important role in the anti-bacterial immunity. In conclusion, this study preliminarily provides insights into the mechanism of signal transduction after Ah infection in S. prenanti, which contributes to exploring the complex anti-bacterial immunity.


Assuntos
Cyprinidae/genética , Cyprinidae/imunologia , Doenças dos Peixes/imunologia , Imunidade Inata/genética , Transdução de Sinais/genética , Receptores Toll-Like/fisiologia , Transcriptoma/imunologia , Aeromonas hydrophila/fisiologia , Animais , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Baço/metabolismo , Receptores Toll-Like/genética
20.
Fish Shellfish Immunol ; 93: 986-996, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31422176

RESUMO

Evolutionary development has increased the diversity of genotypes and the complexity of gene functions in fish. TLR22 has been identified as a teleost-specific gene, but its functions are tremendously different among different fish species. Whether the functional diversity relates to the difference of genotypes remains poorly understand. In this study, we cloned and identified three TLR22 molecules from Schizothorax prenanti (S. prenanti), named as spTLR22-1, spTLR22-2 and spTLR22-3. The full-length coding regions of spTLR22s are 2841 bp, 2805 bp and 2868 bp and coding 946 aa, 934 aa and 955 aa, respectively. All spTLR22s are composed of multiple leucine-rich repeat (LRR) domains, a transmembrane structure and a Toll/IL-1 receptor (TIR) region. The phylogenetic analysis showed that three spTLR22s were close to Cyprinus carpio TLR22-1, TLR22-2 and TLR22-3, respectively. Among the spTLR22s, they presented not close relationship but remained to belong to TLR22 subfamily. All spTLR22s were ubiquitously expressed in all tested tissues, but the expression levels of spTLR22s were dominant in immune-related tissues, such as gill and spleen. The expression levels of spTLR22-1 and spTLR22-3 were significantly increased after treatment with bacteria, LPS and Poly(I:C). However, spTLR22-2 seems like no response to these treatments. The luciferase reporter assay demonstrated that all spTLR22s could activate NF-κB signaling pathway, but only spTLR22-1 and spTLR22-2 could activate IFN-ß signaling pathway. Interestingly, in the ligand recognition analysis, spTLR22-1 and spTLR22-3 but not spTLR22-2 had the recognized potential to Poly(I:C), and all spTLR22s could not recognize LPS. Both spTLR22-1 and spTLR22-3 significantly up-regulated the expression of anti-viral-related genes (Mx, IFN and ISG15) and down-regulated the expression of anti-inflammatory factor IL-10 after the overexpression in carp EPC cell line, but spTLR22-2 failed to impact the expression of these genes. Moreover, we found that all spTLR22s localized to the intracellular region. Taken together, our results reveal that spTLR22-1 and spTLR22-3 but not spTLR22-2 may be involved into the anti-viral immune response via IFN-ß signaling pathway, and all spTLR22s can activate NF-κB signaling pathway but only spTLR22-1 and spTLR22-3 response to the stimulation of bacteria and LPS.


Assuntos
Cyprinidae/genética , Cyprinidae/imunologia , Proteínas de Peixes/genética , Expressão Gênica/imunologia , Receptores Toll-Like/genética , Animais , Fenômenos Fisiológicos Bacterianos , Linhagem Celular , Cyprinidae/metabolismo , Citocinas/metabolismo , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica/veterinária , Lipopolissacarídeos/farmacologia , Luciferases/metabolismo , Filogenia , Poli I-C/farmacologia , Análise de Sequência de Proteína/veterinária , Receptores Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA