Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Environ Res ; 252(Pt 3): 118936, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657847

RESUMO

Artificial forest restoration is widely recognized as a crucial approach to enhance the potential of soil carbon sequestration. Nevertheless, there is still limited understanding regarding the dynamics of aggregate organic carbon (OC) and the underlying mechanisms driving these dynamics after artificial forest restoration. To address this gap, we studied Pinus tabuliformis forests and adjacent farmland in three recovery periods (13, 24 and 33 years) in the Loess Plateau region. Samples of undisturbed soil from the surface layer were collected and divided into three aggregate sizes: >2 mm (large aggregate), 0.25-2 mm (medium aggregate), and <0.25 mm (small aggregate). The aim was to examine the distribution of OC and changes in enzyme activity within each aggregate size. The findings revealed a significant increase in OC content for all aggregate sizes following the restoration of Pinus tabuliformis forests. After 33 years of recovery, the OC of large aggregates, medium aggregates and micro-aggregates increased by (30.23 ± 9.85)%, (36.71 ± 21.60)% and (37.88 ± 16.07)% respectively compared with that of farmland. Moreover, the restoration of Pinus tabuliformis forests lead to increased activity of hydrolytic enzymes and decreased activity of oxidative enzymes. It is noteworthy that the regulation of carbon in all aggregates is influenced by soil P-limitation. In large aggregates, P-limitation promotes the enhancement of hydrolytic enzyme activity, thereby facilitate OC accumulation. Conversely, in medium and small aggregates, P-limitation inhibits the increase in oxidative enzyme activity, resulting in OC accumulation. The results emphasize the importance of P-limitation in regulating OC accumulation during the restoration of Pinus tabulaeformis forest, in which large aggregates play a leading role.


Assuntos
Carbono , Florestas , Pinus , Solo , Solo/química , Carbono/análise , Carbono/metabolismo , Sequestro de Carbono , China
2.
Microb Ecol ; 86(2): 1189-1199, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36123554

RESUMO

Litter decomposition is the main source of soil organic carbon (SOC) pool, regarding as an important part of terrestrial ecosystem C dynamics. The turnover of SOC is mainly regulated by extracellular enzymes secreted by microorganisms. However, the response mechanism of soil C-degrading enzymes and SOC in litter decomposition remains unclear. To clarify how SOC fraction dynamics respond to C-degrading enzymes in litter decomposition, we used field experiments to collect leaf litter and SOC fractions from the underlying layer in Robinia pseudoacacia plantations on the Loess Plateau. Our results showed that SOC, easily oxidizable organic C, dissolved organic C, and microbial biomass C increased significantly during the decomposition process. Litter decomposition significantly decreased soil hydrolase activity, but slightly increased oxidase activity. Correlation analysis results showed that SOC fractions were significantly positively correlated with the litter mass, lignin, soil moisture, and oxidase activity, but significantly negatively correlated with cellulose content and soil pH. Partial least squares path models revealed that soil C-degrading enzymes can directly or indirectly affect the changes of soil C fractions. The most direct factors affecting the SOC fractions of topsoil during litter decomposition were litter lignin and cellulose degradation, soil pH, and C-degrading enzymes. Furthermore, regression analysis showed that the decrease of SOC stability in litter decomposition was closely related to the decrease of soil hydrolase to oxidase ratio. These results highlighted that litter degradation-induced changes in C-degrading enzyme activity significantly affected SOC fractions. Furthermore, the distribution of soil hydrolases and oxidases affected the stability of SOC during litter decomposition. These findings provided a theoretical framework for a more comprehensive understanding of C turnover and stabilization mechanisms between plant and soil.


Assuntos
Robinia , Solo , Solo/química , Ecossistema , Carbono/metabolismo , Lignina/metabolismo , Celulose/metabolismo , Hidrolases/metabolismo , Microbiologia do Solo , Oxirredutases , Florestas , China
3.
J Environ Manage ; 328: 116998, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36516705

RESUMO

Soil Phosphorous (P) availability is a limiting factor for plant growth and regulates biological metabolism in plantation ecosystems. The effect of variations in soil microbial P cycling potential on the availability of soil P during succession in plantation ecosystems is unclear. In this study, a metagenomics approach was used to explore variations in the composition and diversity of microbial P genes along a 45-year recovery sequence of Robinia pseudoacacia on the Loess Plateau, as well soil properties were measured. Our results showed that the diversity of P cycling genes (inorganic P solubilization and organic P mineralization genes) increased significantly after afforestation, and the community composition showed clear differences. The gcd and ppx genes were dominant in inorganic P transformation, whereas phnM gene dominated the transformation of organic P. The abundance of genes involved in inorganic P solubilization and organic P mineralization was significantly positively correlated with P availability, particularly for phnM, gcd, ppx, and phnI genes, corresponding to the phyla Gemmatimonadetes, Acidobacteria, Bacteroidetes, and Planctomycetes. The critical drivers of the microbial main genes of soil P cycling were available P (AP) and total N (TN) in soil. Overall, these findings highlight afforestation-induced increases in microbial P cycling genes enhanced soil P availability. and help to better understand how microbial growth metabolism caused by vegetation restoration in ecologically fragile areas affects the soil P cycling.


Assuntos
Ecossistema , Robinia , Solo , Microbiologia do Solo , Bactérias/genética , China
4.
J Environ Manage ; 348: 119318, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37857219

RESUMO

Changes in precipitation patterns in arid and semi-arid regions can reshape plant functional traits and significantly affect ecosystem functions. However, the synchronous responses of leaf economical, anatomical, photosynthetic, and biochemical traits to precipitation changes and their driving factors have rarely been investigated, which hinders our understanding of plants' ecological adaptation strategies to drought tolerance in arid areas. Therefore, the leaf traits of two typical plantations (Robinia pseudoacacia, RP and Pinus tabulaeformis, PT) along the precipitation gradient in the Loess Plateau, including economical, anatomical, photosynthetic, and biochemical traits, were investigated in this study. The results show that the leaf photosynthetic traits of RP and PT increase along the precipitation gradient, whereas leaf biochemical traits decrease. The anatomical traits of PT decrease with increasing precipitation, whereas no significant variation was observed for RP. Random Forest analysis show that LNC, LDMC, Chl, and PRO are leaf traits that significantly vary with the precipitation gradient in both plantations. Correlation analysis reveals that the traits coordination of RP is better than that of PT. The LMG model was used to determine driving factors. The results suggest that MAP explains the variation of PT leaf traits better (30.38%-36.78%), whereas SCH and SPH contribute more to the variation of RP leaf traits (20.88%-41.76%). In addition, the piecewise Structural Equation Model shows that the climate and soil physical and chemical properties directly affect the selected leaf functional traits of RP, whereas only the soil chemical properties directly affect the selected leaf functional traits of PT. The results of this study contribute to the understanding of the ecological adaptation of plants to environmental gradients and highlight that correlations among leaf traits should be considered when predicting plant adaptation strategies under future global change scenarios.


Assuntos
Pinus , Robinia , Ecossistema , Nitrogênio/análise , Solo/química , Plantas , China , Folhas de Planta/química
5.
J Environ Manage ; 346: 119052, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742562

RESUMO

Natural restoration (NR, e.g., secondary succession) and artificial restoration (AR, e.g., afforestation) are key approaches for rehabilitating degraded land; however, a comparative assessment of microbial network between these approaches is lacking. We compared bacterial networks under NR and AR in two different watersheds on the Loess Plateau. Our findings revealed significantly heightened network complexity under NR compared to AR, including metrics such as node, edge, modularity, degree, centrality, and keystone nodes. NR's network robustness exceeded AR by 19.45-35.9% and 7.79-17.74% in the two watersheds, aligning with the ecological principle that complexity begets stability. The significantly higher negative/positive cohesion and natural connectivity under NR also support its better network stability than AR. Integrated analysis of paired sequencing data from five Loess Plateau studies conducted on the Loess Plateau further confirmed the higher complexity and stability of bacterial networks under NR. Further analysis unveiled "biological interactions" as primary drivers of bacterial co-occurrence (on average 84.21% of links), surpassing the influence of environmental filtering (5.17%) or dispersal limitation (4.2%). Importantly, networked communities under NR exhibited generally stronger linkages with various ecosystem function than AR. Overall, our study provides insights into vegetation restoration strategies from the perspective of microbial network, underscoring natural regeneration's potential as a superior remedy for degraded-land restoration.


Assuntos
Ecossistema , Solo , Bactérias , China
6.
Glob Chang Biol ; 28(4): 1516-1528, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34807491

RESUMO

Soil priming is a microbial-driven process, which determines key soil-climate feedbacks in response to fresh carbon inputs. Despite its importance, the microbial traits behind this process are largely undetermined. Knowledge of the role of these traits is integral to advance our understanding of how soil microbes regulate carbon (C) emissions in forests, which support the largest soil carbon stocks globally. Using metagenomic sequencing and 13 C-glucose, we provide unprecedented evidence that microbial traits explain a unique portion of the variation in soil priming across forest biomes from tropical to cold temperature regions. We show that microbial functional profiles associated with the degradation of labile C, especially rapid simple sugar metabolism, drive soil priming in different forests. Genes involved in the degradation of lignin and aromatic compounds were negatively associated with priming effects in temperate forests, whereas the highest level of soil priming was associated with ß-glucosidase genes in tropical/subtropical forests. Moreover, we reconstructed, for the first time, 42 whole bacterial genomes associated with the soil priming effect and found that these organisms support important gene machinery involved in priming effect. Collectively, our work demonstrates the importance of microbial traits to explain soil priming across forest biomes and suggests that rapid carbon metabolism is responsible for priming effects in forests. This knowledge is important because it advances our understanding on the microbial mechanisms mediating soil-climate feedbacks at a continental scale.


Assuntos
Carbono , Solo , Ecossistema , Florestas , Microbiologia do Solo
7.
Microb Ecol ; 83(1): 114-126, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33743015

RESUMO

Soil microorganisms play an important role in the circulation of materials and nutrients between plants and soil ecosystems, but the drivers of microbial community composition and diversity remain uncertain in different vegetation restoration patterns. We studied soil physicochemical properties (i.e., soil moisture, bulk density, pH, soil nutrients, available nutrients), plant characteristics (i.e., Shannon index [HPlant] and Richness index [SPlant], litter biomass [LB], and fine root biomass [FRB]), and microbial variables (biomass, enzyme activity, diversity, and composition of bacterial and fungal communities) in different plant succession patterns (Robinia pseudoacacia [MF], Caragana korshinskii [SF], and grassland [GL]) on the Loess Plateau. The herb communities, soil microbial biomass, and enzyme activities were strongly affected by vegetation restoration, and soil bacterial and fungal communities were significantly different from each other at the sites. Correlation analysis showed that LB and FRB were significantly positively correlated with the Chao index of soil bacteria, soil microbial biomass, enzyme activities, Proteobacteria, Zygomycota, and Cercozoa, while negatively correlated with Actinobacteria and Basidiomycota. In addition, soil water content (SW), pH, and nutrients have important effects on the bacterial and fungal diversities, as well as Acidobacteria, Proteobacteria, Actinobacteria, Nitrospirae, Zygomycota, and microbial biomass. Furthermore, plant characteristics and soil properties modulated the composition and diversity of soil microorganisms, respectively. Overall, the relative contribution of vegetation and soil to the diversity and composition of soil bacterial and fungal communities illustrated that plant characteristics and soil properties may synergistically modulate soil microbial communities, and the composition and diversity of soil bacterial and fungal communities mainly depend on plant biomass and soil nutrients.


Assuntos
Microbiota , Solo , Biomassa , China , Nutrientes , Solo/química , Microbiologia do Solo
8.
J Environ Manage ; 268: 110558, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32383654

RESUMO

Afforestation has been proven to have enormous potential for carbon (C) sequestration; however, the dynamics of aggregate-associated organic carbon (OC) following afforestation and their contribution to changes in bulk soil OC are not well understood in regions with serious soil erosion. Therefore, we investigated the dynamics of OC associated with aggregates along a Robinia pseudoacacia (RP) afforestation chronosequence in the Loess Plateau. Soil aggregate size distribution and OC dynamics in bulk soil were analyzed 10, 18, 28, and 42 years after RP afforestation at depths of 0-20 cm and 20-40 cm. Results showed that total macroaggregates (>0.25 mm), mean weight diameter, and geometric mean diameter increased significantly with stand age, after 42 years of afforestation, increased by 433.5%, 437.2%, 302.1% in the 0-20 cm depth, respectively, while microaggregate amounts decreased by 52.9%, and the proportions of silt + clay fraction showed no obvious changes. Long-term afforestation increased OC content and stock, both in bulk soil (245.6% and 222.9% in the 0-20 cm depth, respectively) and soil aggregates. The improvement of soil structure and enrichment of OC stocks were greater at the 0-20 cm depth than the 20-40 cm depth. In addition, small macroaggregates (2-0.25 mm) contained the highest OC content and microaggregates (<0.025 mm) had the highest OC stocks regardless of soil depth and stand age. Across the afforestation chronosequence, OC content and stock in bulk soil positively correlated with large macroaggregate (>2 mm) amounts and small macroaggregate (2-0.25 mm) associated OC dynamics (P < 0.01). These results indicated that changes in bulk soil OC dynamics mainly depend on changes in the proportion of large macroaggregates and in the OC dynamics associated with small macroaggregates after RP afforestation.


Assuntos
Robinia , Carbono , Sequestro de Carbono , China , Solo
9.
ScientificWorldJournal ; 2014: 405924, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24741348

RESUMO

Food security is chronically guaranteed in Egypt because of the food subsidy policy of the country. However, the increasing Egyptian population is straining the food supply. To study changes in Egyptian food security and future food supply capacity, we analysed the historical grain production, yield per unit, grain-cultivated area, and per capita grain possession of Egypt. The GM (1,1) model of the grey system was used to predict the future population. Thereafter, the result was combined with scenario analysis to forecast the grain possession and population carrying capacity of Egypt under different scenarios. Results show that the increasing population and limitations in cultivated land will strain Egyptian food security. Only in high cultivated areas and high grain yield scenarios before 2020, or in high cultivated areas and mid grain yield scenarios before 2015, can food supply be basically satisfied (assurance rate ≥ 80%) under a standard of 400 kg per capita. Population carrying capacity in 2030 is between 51.45 and 89.35 million. Thus, we propose the use of advanced technologies in agriculture and the adjustment of plant structure and cropping systems to improve land utilization efficiency. Furthermore, urbanization and other uses of cultivated land should be strictly controlled to ensure the planting of grains.


Assuntos
Agricultura/estatística & dados numéricos , Conservação dos Recursos Naturais/estatística & dados numéricos , Grão Comestível/crescimento & desenvolvimento , Indústria Alimentícia/estatística & dados numéricos , Abastecimento de Alimentos/estatística & dados numéricos , Modelos Estatísticos , Medidas de Segurança/estatística & dados numéricos , Simulação por Computador , Egito , Alimentos , Crescimento Demográfico
10.
Sci Total Environ ; : 175092, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39079645

RESUMO

Plant litter is an important source of soil organic carbon (SOC) in terrestrial ecosystems, and the pattern of litter inputs is also influenced by global change and human activities. However, the current understanding of the impact of changes in litter inputs on SOC dynamics remains contentious, and the mechanisms by which changes in litter inputs affect SOC have rarely been investigated from the perspective of microbial carbon use efficiency (CUE). We conducted a 1-year experiment with litter treatments (no aboveground litter (NL), natural aboveground litter (CK), and double aboveground litter (DL)) in Robinia pseudoacacia plantation forest on the Loess Plateau. The objective was to assess how changes in litter input affect SOC accumulation in forest soils from the perspective of microbial CUE. Results showed that NL increased soil microbial C limitation by 77.11 % (0-10 cm) compared to CK, while it had a negligible effect on nitrogen and phosphorus limitation. In contrast, DL had no significant effect on soil microbial nutrient limitation. Furthermore, NL was found to significantly increase microbial CUE and decrease microbial metabolic quotient (QCO2), while the opposite was observed with DL. It is noteworthy that NL significantly contributed to an increase in SOC of 30.72 %, while DL had no significant effect on SOC. Correlation analysis showed that CUE was directly proportional to SOC and inversely proportional to QCO2. The partial least squares pathway model indicated that NL indirectly regulated the accumulation of SOC, mainly through two pathways: promoting microbial CUE increase and reducing QCO2. Overall, this study elucidates the mechanism and novel insights regarding SOC accumulation under changes in litter input from the perspective of microbial CUE. These findings are critical for further comprehension of soil carbon dynamics and the terrestrial C-cycle.

11.
Sci Total Environ ; 923: 171370, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438037

RESUMO

Soil respiration the second-largest carbon flux in terrestrial ecosystems, has been extensively studied across a wide range of biomes. Surprisingly, no consensus exist on how acid rain (AR) impacts the spatiotemporal pattern of soil respiration. Therefore, we conducted a meta-analysis using 318 soil respiration and 263 soil respiration temperature sensitivity (Q10) data points obtained from 48 studies to assess the impact of AR on soil respiration components and their Q10. The results showed that AR reduced soil total respiration (Rt) and soil autotrophic respiration (Ra) by 7.41 % and 20.75 %, respectively. As the H+ input increased, the response rates of Ra to AR (RR-Ra) and soil heterotrophic respiration (Rh) to AR (RR-Rh) decreased and increased, respectively. With increased AR duration, the RR-Ra increased, whereas the RR-Rh did not change. AR increased the Q10 of Rt (Rt-Q10) and Rh (Rh-Q10) by 1.92 % and 9.47 %, respectively, and decreased the Q10 of Ra (Ra-Q10) by 2.77 %. Increased mean annual temperature, mean annual precipitation, and initial soil organic carbon increased the response rate of Ra-Q10 to AR (RR-Ra-Q10) and decreased the response rate of Rh-Q10 to AR (RR-Rh-Q10). However, as the AR frequency and initial soil pH increased, both RR-Ra-Q10 and RR-Rh-Q10 also increased. In summary, AR decreased Rt but increased Q10, likely due to soil acidification (soil pH decreased by 7.84 %), reducing plant root biomass (decreased by 5.67 %) and soil microbial biomass (decreased by 5.67 %), changing microbial communities (increased fungi to bacteria ratio of 15.91 %), and regulated by climate, vegetation, soil and AR regimes. To the best of our knowledge, this is the first study to reveal the large-scale, varied response patterns of soil respiration components and their Q10 to AR. It highlights the importance of applying the reductionism theory in soil respiration research to enhance our understanding of soil carbon cycling processes with in the context of global climate change.


Assuntos
Chuva Ácida , Ecossistema , Solo , Temperatura , Carbono , Respiração , Ciclo do Carbono
12.
Sci Total Environ ; 948: 174812, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019268

RESUMO

Climate change is exacerbating drought in arid and semi-arid forest ecosystems worldwide. Soil microorganisms play a key role in supporting forest ecosystem services, yet their response to changes in aridity remains poorly understood. We present results from a study of 84 forests at four south-to-north Loess Plateau sites to assess how increases in aridity level (1- precipitation/evapotranspiration) shapes soil bacterial and fungal diversity and community stability by influencing community assembly. We showed that soil bacterial diversity underwent a significant downward trend at aridity levels >0.39, while fungal diversity decreased significantly at aridity levels >0.62. In addition, the relative abundance of Actinobacteria and Ascomycota increased with higher aridity level, while the relative abundance of Acidobacteria and Basidiomycota showed the opposite trend. Bacterial communities also exhibited higher similarity-distance decay rates across geographic and environmental gradients than did fungal communities. Phylogenetic bin-based community assembly analysis revealed homogeneous selection and dispersal limitation as the two dominant processes in bacterial and fungal assembly. Dispersal limitation of bacterial communities monotonically increased with aridity levels, whereas homogeneous selection of fungal communities monotonically decreased. Importantly, aridity also increased the sensitivity of microbial communities to environmental disturbance and potentially decreased community stability, as evidenced by greater community similarity-environmental distance decay rates, narrower habitat niche breadth, and lower microbial network stability. Our study provides new insights into soil microbial drought response, with implications on the sustainability of ecosystems under environmental stress.

13.
Nat Commun ; 15(1): 6269, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054311

RESUMO

Understanding the large-scale pattern of soil microbial carbon use efficiency (CUE) and its temperature sensitivity (CUET) is critical for understanding soil carbon-climate feedback. We used the 18O-H2O tracer method to quantify CUE and CUET along a north-south forest transect. Climate was the primary factor that affected CUE and CUET, predominantly through direct pathways, then by altering soil properties, carbon fractions, microbial structure and functions. Negative CUET (CUE decreases with measuring temperature) in cold forests (mean annual temperature lower than 10 °C) and positive CUET (CUE increases with measuring temperature) in warm forests (mean annual temperature greater than 10 °C) suggest that microbial CUE optimally operates at their adapted temperature. Overall, the plasticity of microbial CUE and its temperature sensitivity alter the feedback of soil carbon to climate warming; that is, a climate-adaptive microbial community has the capacity to reduce carbon loss from soil matrices under corresponding favorable climate conditions.


Assuntos
Carbono , Florestas , Microbiologia do Solo , Solo , Temperatura , Carbono/metabolismo , Solo/química , Mudança Climática , Ciclo do Carbono
14.
Sci Total Environ ; 923: 171418, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460701

RESUMO

Perturbations in soil microbial communities caused by climate warming are expected to have a strong impact on biodiversity and future climate-carbon (C) feedback, especially in vulnerable habitats that are highly sensitive to environmental change. Here, we investigate the impact of four-year experimental warming on soil microbes and C cycling in the Loess Hilly Region of China. The results showed that warming led to soil C loss, mainly from labile C, and this C loss is associated with microbial response. Warming significantly decreased soil bacterial diversity and altered its community structure, especially increasing the abundance of heat-tolerant microorganisms, but had no effect on fungi. Warming also significantly increased the relative importance of homogeneous selection and decreased "drift" of bacterial and fungal communities. Moreover, warming decreased bacterial network stability but increased fungal network stability. Notably, the magnitude of soil C loss was significantly and positively correlated with differences in bacterial community characteristics under ambient and warming conditions, including diversity, composition, network stability, and community assembly. This result suggests that microbial responses to warming may amplify soil C loss. Combined, these results provide insights into soil microbial responses and C feedback in vulnerable ecosystems under climate warming scenarios.


Assuntos
Ecossistema , Microbiota , Pradaria , Solo , Carbono , Mudança Climática , Microbiologia do Solo , Bactérias
15.
Huan Jing Ke Xue ; 44(5): 2767-2774, 2023 May 08.
Artigo em Zh | MEDLINE | ID: mdl-37177949

RESUMO

Nitrogen (N) deposition in the context of human activities continuously affects the carbon cycle of ecosystems. The effect of N deposition on soil organic carbon is related to the differential responses of different carbon fractions. To investigate the changes in soil organic carbon fraction and its influencing factors in the context of short-term N deposition, four N addition gradients:0 (CK), 1.5 (N1), 3 (N2), and 6 (N3) g·(m2·a)-1 were set up in acacia plantations based on field N addition experiments, and the soil physicochemical properties, microbial biomass, and enzyme activities were measured in June and September. The results showed that:① exogenous N input reduced soil pH, promoted the increase in soluble organic carbon content, and increased soil nitrogen effectiveness. ② Short-term N addition significantly reduced soil organic carbon content, and the response of each component of organic carbon to N addition was different. Among them, the content of easily oxidized organic carbon was significantly reduced and reached the lowest value under the N2 treatment, with 54.4% and 48.2% reduction compared with that of the control, respectively, and the content of inert organic carbon increased, although the increase was not significant. Nitrogen addition reduced the soil carbon pool activity and improved the stability of the soil carbon pool. Soil carbon pool activity reached its lowest under the N3 and N2 treatments, with a decrease of 53.3% and 52.80%, respectively, compared to that of the control. ③Random forest modeling indicated that the soil microbial biomass stoichiometry ratio, microbial biomass carbon, and AP were the key factors driving the changes in soil organic carbon activity under short-term N addition, explaining 65.96% and 66.68% of the changes in oxidizable organic carbon and inert organic carbon, respectively. Structural equation modeling validated the results of the random forest modeling, and soil microbial biomass stoichiometric ratios significantly influenced carbon pool activity. Short-term nitrogen addition changed soil microbial biomass and its stoichiometric ratio in the acacia plantation forest mainly through two pathways, i.e., increasing soil nitrogen effectiveness and promoting soil acidification and inhibiting extracellular carbon hydrolase activity, thus changing the soil carbon fraction ratio and participating in the soil organic carbon cycling process.


Assuntos
Ecossistema , Robinia , Humanos , Carbono/análise , Robinia/metabolismo , Nitrogênio/análise , Solo/química , Microbiologia do Solo , Biomassa , China
16.
Huan Jing Ke Xue ; 44(4): 2275-2282, 2023 Apr 08.
Artigo em Zh | MEDLINE | ID: mdl-37040976

RESUMO

In order to explore the characteristics of the soil organic carbon(SOC)pool and its chemical composition during the succession of secondary forests in the Loess Plateau, samples of the primary stage (Populus davidiana forest), transition stage (Populus davidiana and Quercus wutaishansea mixed forest), and top stage (Quercus wutaishansea forest) of secondary forest succession in the Huanglong Mountain forest area of the Loess Plateau in Northern Shaanxi were selected as the research object. The variation characteristics of SOC content, storage, and its chemical composition at different soil depths (0-10, 10-20, 20-30, 30-50, and 50-100 cm) were analyzed. The results showed that:① the contents and storage of SOC increased significantly with the secondary forest succession process (P<0.05). The content of SOC decreased significantly with the increase in soil depth, and the storage of SOC increased from 64.8 Mg·hm-2 in the primary stage to 129.2 Mg·hm-2 in the top stage, with an increase of 99%. ② During the succession of secondary forests, in the surface (0-30 cm) soil organic carbon, the relative content of aliphatic carbon components that have a simple structure and can be decomposed more easily decreased, and the relative content of aromatic carbon components that have a complex structure and cannot be decomposed easily increased, indicating that the chemical composition of organic carbon stability of surface-layer soil increased significantly with the process of secondary forest succession. However, the stability of the chemical composition of SOC in the deep layer (30-100 cm) first increased and then decreased, that is, the transition stage>the top stage>the primary stage. ③In the process of secondary forest succession, the stability of SOC chemical composition in the primary stage and transition stage increased significantly with the increase in soil depth. The top stage tended to be stable, and the deep soil carbon stability decreased slightly. ④ Pearson correlation analysis showed that during the secondary forest succession process, SOC storage and chemical composition stability were significantly negatively correlated with soil total phosphorus content. In general, the content and storage of SOC in the 0-100 cm soil increased significantly during the secondary forest succession, playing the role of a "carbon sink." The stability of the chemical composition of SOC in the surface layer (0-30 cm) increased significantly, but in the deep layer (30-100 cm), it increased first and then decreased.

17.
Huan Jing Ke Xue ; 44(8): 4689-4697, 2023 Aug 08.
Artigo em Zh | MEDLINE | ID: mdl-37694661

RESUMO

As a key factor of global climate change, precipitation can affect soil respiration. Microorganisms are the key drivers of soil respiration, but the relationship between microbial stoichiometry and respiration in vulnerable habitat areas under different precipitation gradients is unclear. In this study, five precipitation gradients were simulated on a typical abandoned grassland in the loess hilly region. Soil respiration, nutrients, microbial biomass, and extracellular enzymes were measured, and the microbial measurement characteristics were calculated. The results showed that:①soil respiration (SR) increased significantly under rainfed treatment but decreased significantly under D50 treatment. ②Precipitation changes affected the stoichiometric imbalance, and the N:P imbalance of the active resource pool presented a u-shaped trend, whereas the C:P imbalance changed significantly only in 2019, with a trend of P50>P25>CK>D25>D50. Additionally, the stoichiometric imbalance was caused by the soil stoichiometry. In 2019, the C:P imbalance of the active resource pool showed a trend of P50>P25>CK>D25>D50, whereas the N:P imbalance of the active resource pool showed a u-shaped trend, and the stoichiometric imbalance was caused by soil stoichiometry changes. ③Soil ß-1,4-glucosidase (BG) enzyme decreased with increasing precipitation, and the sum activities of ß-1,4-N-acetylglucosaminidase (NAG) and leucine aminopeptidase (LAP) significantly decreased during two years of rainfall reduction treatment. The activity of alkaline phosphatase (ALP) significantly increased under increasing rainfall but significantly decreased under decreasing rainfall. BG:(NAG+LAP) and BG:ALP were significantly decreased under increasing precipitation conditions but significantly increased under decreasing precipitation conditions. ④The partial least squares path model (PLS-PM) showed that precipitation had an impact on soil respiration through influencing C:P stoichiometric imbalance and soil enzyme stoichiometric ratio. These results highlight the importance of stoichiometric imbalances in regulating soil respiration and may help predict how they are caused by precipitation change control carbon cycling and nutrient flow in terrestrial ecosystems.


Assuntos
Ecossistema , Pradaria , Biomassa , Corantes , Respiração , Solo
18.
Huan Jing Ke Xue ; 44(1): 444-451, 2023 Jan 08.
Artigo em Zh | MEDLINE | ID: mdl-36635832

RESUMO

In order to explore the characteristics of organic carbon mineralization and the variation law of organic carbon components of an artificial forest in a loess hilly area, an artificial Robinia pseudoacacia forest restored for 13 years and the adjacent slope farmland were selected as the research objects, and indoor culture experiments under three different temperature treatments (15, 25, and 35℃) were carried out. The results indicated that the mineralization rate of soil organic carbon decreased sharply at first and then stabilized. The cumulative release of organic carbon increased rapidly in the initial stage of culture and gradually slowed in the later stage. Soil organic carbon mineralization in sloping farmland was more sensitive to temperature change, and its temperature sensitivity coefficient Q10 was 1.52, whereas that in R. pseudoacacia forest land was only 1.38. According to the fitting of the single reservoir first-order dynamic equation, the soil mineralization potential Cp of R. pseudoacacia forest land and slope farmland was between 2.02-4.32 g·kg-1 and 1.25-3.17 g·kg-1, respectively, that is, the mineralization potential of the R. pseudoacacia forest was higher. During the cultivation period, the content of various active organic carbon components decreased with time, and that in the R. pseudoacacia forest land was greater than that in the slope land. The cumulative carbon release of soil was significantly positively correlated with the contents of MBC and DOC (P<0.05), and Q10 (15-25℃) was negatively correlated with the contents of SOC, EOC, and SWC (P<0.05). These results could provide some reference for the study of soil carbon sequestration in loess hilly regions under climate change.


Assuntos
Robinia , Solo , Carbono/análise , Nitrogênio/análise , Florestas , Carvão Vegetal , China
19.
Imeta ; 2(2): e106, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38868425

RESUMO

Our results reveal different responses of soil multifunctionality to increased and decreased precipitation. By linking microbial network properties to soil functions, we also show that network complexity and potentially competitive interactions are key drivers of soil multifunctionality.

20.
Sci Total Environ ; 815: 152918, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34999061

RESUMO

Exploring the limitations of soil microbial nutrient metabolism would help to understand the adaptability and response mechanisms of soil microbes in semi-arid ecosystems. Soil ecoenzymatic stoichiometry is conducive to quantifying the nutrient limitations of microorganisms. To quantify microbial nutrient limitation during plant restoration, we measured soil physicochemical properties, microbial biomass, and the activities of four enzymes (ꞵ-1,4-glucosidase, leucine aminopeptidase, ꞵ-1,4-N-acetylglucosaminidase, and alkaline phosphatase) in the soils of the northern Loess Plateau. Vegetation restoration patterns significantly affected soil properties, microbial biomass, enzymatic activity, and associated stoichiometry. Soil enzymatic activity increased significantly after vegetation restoration, especially in Robinia pseudoacacia plantations (RP). Correlation analysis showed that soil nutrients (C and N), moisture and pH were significantly correlated with ecoenzymatic activities and their stoichiometries. Vector-threshold element ratio (VT) model analysis revealed that microbial nutrient metabolism was limited by P, and soil microbial C limitation was significantly weakened after vegetation restoration, particularly in RP. Correlation analysis indicated that microbial nutrient limitations represented by the VT model were significantly correlated with soil moisture, nutrients, and associated stoichiometry. Therefore, the soil microbial community was mainly limited by P rather than N in vegetation restoration on the Loess Plateau via the VT model, and this limitation was primarily associated with the variation in soil properties. In addition, the soil microbial C limitation was significantly negatively correlated with microbial nutrient (P or N) limitation, which illustrated that soil microbial nutrient metabolism has strong stoichiometric homeostasis.


Assuntos
Microbiota , Fósforo , Carbono/análise , China , Ecossistema , Nitrogênio/análise , Fósforo/análise , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA