Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 256(2): 42, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842503

RESUMO

MAIN CONCLUSION: Phosphate deficiency promotes anthocyanin accumulation in Arabidopsis through direct binding of PHR1 to the P1BS motifs on the promoters of F3'H and LDOX and thereby upregulating their expression. Phosphorus is one of the essential elements for plants, and plants mainly absorb inorganic phosphate (Pi) from soil. But Pi deficiency is a common factor limiting plant growth and development. Anthocyanin accumulation in green tissues (such as leaves) is one of the characteristics of many plants in response to Pi starvation. However, little is known about the mechanism by which Pi starvation induces anthocyanin accumulation. Here, we found that the mutation of the gene PHOSPHATE STARVATION RESPONSE1 (PHR1), which encodes a key factor involved in Pi starvation signaling in Arabidopsis, significantly attenuates anthocyanin accumulation under Pi-limiting conditions. Moreover, the expression of several Pi deficiency-upregulated genes that are involved in anthocyanin biosyntheses, such as flavanone 3'-hydroxylase (F3'H), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin dioxygenase (LDOX), and production of anthocyanin pigment 1 (PAP1), was significantly lower in the phr1-1 mutant than in the wild type (WT). Both yeast one-hybrid (Y1H) analysis and chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) showed that PHR1 can interact with the promoters of F3'H and LDOX, but not DFR and PAP1. By electrophoretic mobility shift assay (EMSA), it was further confirmed that the PHR1-binding sequence (P1BS) motifs located on the F3'H and LDOX promoters are required for the PHR1 bindings. Also, in Arabidopsis protoplasts, PHR1 enhanced the transcriptional activity of the F3'H and LDOX promoters, but these effects were markedly impaired when the P1BS motifs were mutated. Taken together, these results indicate that PHR1 positively regulates Pi starvation-induced anthocyanin accumulation in Arabidopsis, at least in part, by directly binding the P1BS motifs located on the promoters to upregulate the transcription of anthocyanin biosynthetic genes F3'H and LDOX.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Antocianinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Oxigenases , Fosfatos/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima/genética
2.
Physiol Plant ; 173(3): 1063-1077, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34263934

RESUMO

Inorganic phosphate (Pi) deficiency is a major limiting factor for plant growth and development. Previous reports have demonstrated that PHOSPHATE STARVATION RESPONSE 1 (PHR1) and OsPHR2 play central roles in Pi-starvation signaling in Arabidopsis and rice, respectively. However, the Pi-starvation signaling network in tomato (Solanum lycopersicum) is still not fully understood. In this work, SlPHL1, a homolog of AtPHR1 and OsPHR2, was identified from tomato. It was found that SlPHL1 contains the MYB and coiled-coil (CC) domains, localizes in the nucleus, and has transcriptional activity, indicating that it is a typical MYB-CC transcription factor (TF). Overexpression of SlPHL1 enhanced Pi-starvation responses both in Arabidopsis Col-0 and in tomato Micro-Tom, including elevated root hair growth, promoted APase activity, favored Pi uptake, and increased transcription of Pi starvation-inducing (PSI) genes. Besides, overexpressing SlPHL1 was able to compensate for the Pi-starvation response weakened by the AtPHR1 mutation. Notably, electrophoretic mobility shift assay (EMSA) showed that SlPHL1 could bind to the PHR1-binding sequence (P1BS, GNATATNC)-containing DNA fragments. Furthermore, SlPHL1 specifically interacted with the promoters of the tomato PSI genes SlPht1;2 and SlPht1;8 through the P1BS cis-elements. Taken these results together, SlPHL1 is a newly identified MYB-CC TF from tomato, which participates in Pi-starvation signaling by directly upregulating the PSI genes. These findings might contribute to the understanding of the Pi-starvation signaling in tomato.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Fosfatos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Front Endocrinol (Lausanne) ; 15: 1336402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742197

RESUMO

Diabetic kidney disease (DKD), a significant complication associated with diabetes mellitus, presents limited treatment options. The progression of DKD is marked by substantial lipid disturbances, including alterations in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Altered lipid metabolism serves as a crucial pathogenic mechanism in DKD, potentially intertwined with cellular ferroptosis, lipophagy, lipid metabolism reprogramming, and immune modulation of gut microbiota (thus impacting the liver-kidney axis). The elucidation of these mechanisms opens new potential therapeutic pathways for DKD management. This research explores the link between lipid metabolism disruptions and DKD onset.


Assuntos
Nefropatias Diabéticas , Metabolismo dos Lipídeos , Humanos , Nefropatias Diabéticas/metabolismo , Animais , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/complicações , Microbioma Gastrointestinal
4.
Mar Pollut Bull ; 181: 113874, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35777324

RESUMO

Black carbon (BC) and persistent organic pollutants (POPs) were analyzed from three sediment cores collected offshore in the East China Marginal Seas. The results showed steadily increasing or stable BC concentrations and fluxes. By contrast, time trends of POPs fluxes were consistent with historical records of commercial production and use in China. Although the POP inventories decreased significantly with increase in offshore distance, the relatively consistent trends for individual POPs in different sea areas confirmed that the main sources are derived from mainland China and that atmospheric input was an important contribution. POPs inventories decreased by 59-91 % during transport from the Yellow Sea to the remote East China Sea and deposition to the sediment. This suggests that the source signal for POPs may be preserved under stable depositional environments, even though only a fraction of those pollutants are buried in open sea sediments.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Carbono/análise , China , Monitoramento Ambiental , Sedimentos Geológicos , Oceanos e Mares , Poluentes Orgânicos Persistentes , Fuligem , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA