Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Environ Sci Technol ; 57(47): 19000-19011, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37162466

RESUMO

Regulation of the fast electron transport process for the generation and utilization of reactive oxygen species (ROS) by achieving fortified electron "nanofluidics" is effective for electrocatalytic oxidation of organic microcontaminants. However, limited available active sites and sluggish mass transfer impede oxidation efficiency. Herein, we fabricated a conductive electrocatalytic membrane decorated with hierarchical porous vertically aligned Fe(II)-modulated FeCo layered double hydroxide nanosheets (Fe(II)-FeCo LDHs) in an electro-Fenton system to maximize exposure of active sites and expedite mass transfer. The nanospaced interlayers of Fe(II)-FeCo LDHs within the microconfined porous structure formed by its vertical nanosheets highly boost the micro/nanofluidic distribution of target pollutants to active centers/species, achieving accelerated mass transferability. Aliovalent substitution by Fe(II) activates in-plane metallics to maximize the available active sites and makes each Fe(II)-FeCo LDH nanosheet a geometrical nanocarrier for constructing a fast electron "nanofluidic" to accelerate Fe(II) regeneration in Fe(III)/Fe(II) cycles. As a result, the Fe(II)-FeCo LDHs exhibited improved reactivity in catalyzing H2O2 to •OH and 1O2. Accordingly, the membrane exhibited a higher atrazine degradation kinetic (0.0441 min-1) and degradation rate (93.2%), which were 4.7 and 2.1 times more than those of the bare carbon nanotube membrane, respectively. Additionally, the enhanced hydrophilic and strongly oxidized reactivity synergistically mitigated the organic fouling occurring in the pores and surface of the membrane. These findings clarify the activation mechanism of ROS over an innovative electrocatalytic membrane reactor design for organic microcontaminant treatment.


Assuntos
Compostos Férricos , Peróxido de Hidrogênio , Transporte de Elétrons , Espécies Reativas de Oxigênio , Compostos Férricos/química , Peróxido de Hidrogênio/química , Oxirredução , Compostos Ferrosos
2.
J Hazard Mater ; 476: 134631, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38901257

RESUMO

The occurrence and health risks of fluorescent whitening agents (FWAs) in bottled water were reported for the first time. FWA184 and FWA393 were the most frequently detected FWAs, with mean concentrations of 3.99-17.00 ng L-1. Phthalates (PAEs) such as dibutyl phthalate (DBP), di-iso-butyl phthalate (DiBP), and diethylhexyl phthalate (DEHP) were prevalent in bottled water, with mean levels of 40.89-716.66 ng L-1, and their concentrations in bottled water were much higher than those of FWAs. FWAs and PAEs in bottles and caps were extracted using organic solvent, and the correlation analysis showed that FWA393 and DEHP most likely originated from bottles, while bottle caps were the main sources of DBP and DiBP. The calculated risk quotients (RQs) of target substances and all age groups were considerably lower than the threshold of 0.1, indicating that consuming bottled water containing these plastic additives was unlikely to pose health risks for people of all ages. However, RQ values for underage people were several times higher than those for adults and hence cannot be neglected; therefore, special attention should be paid to understand the potential risks posed by the exposure to these plastic additives during early life stages, especially the infant stage.

3.
J Hazard Mater ; 470: 134138, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574657

RESUMO

Electro-Fenton membranes (EFMs) can synchronously realize organic micropollutants destruction and fouling mitigation in a single filtration process with the assistance of hydroxyl radicals (•OH). Herein, a nanoarray-structured EFM (NS-EFM) was designed by assembling Fenton reactive CoFe-LDH nanowires using a low-temperature hydrothermal method. Combined with a defect-engineering strategy, the oxygen vacancies (OVac) in the CoFe-LDH nanoarrays were tailored by manipulating the stoichiometry of cations to optimize the Fenton reactivity of NS-EFMs. The optimized NS-EFM demonstrated exceptional sulfamethoxazole (SMX) removal (99.4%) and fast degradation kinetics (0.0846 min-1), but lower energy consumption (0.22 kWh m-3 per log removal of SMX). In-depth mechanism analysis revealed that the intrinsic electronic properties of OVac endowed NS-EFM with enhanced reactivity and charge transferability at metallic active sites of CoFe-LDH, thereby intensifying •OH generation. Besides, the nanoarray-structured NS-EFM built a confined microreactor space, leading to expedited •OH microflow to SMX. Meanwhile, the hydrophilic nature of CoFe-LDH nanoarrays synergistically contributed to the high flux recovery (95.0%) and minimal irreversible membrane fouling (5.0%), effectively alleviating membrane fouling within pores and on surfaces. This study offers insights into the potential of defect engineering as a foundational strategy in the design of EFMs, significantly advancing the treatment of organic pollutants and control of membrane fouling.

4.
Materials (Basel) ; 17(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612110

RESUMO

Based on the previous research on the energy absorption of foam metal materials with different structures, a composite blast-resistant energy-absorbing material with a flexible core layer was designed. The material is composed of three different fiber materials (carbon fiber, aramid fiber, and glass fiber) as the core layer and foamed iron-nickel metal as the front and rear panels. The energy absorption characteristics were tested using a self-built gas explosion tube network experimental platform, and the energy absorption effects of different combinations of blast-resistant materials were analyzed. The purpose of this paper is to evaluate the performance of blast-resistant materials designed with flexible fiber core layers. The experimental results show that the composite structure blast-resistant material with a flexible core layer has higher energy absorption performance. The work performed in this paper shows that the use of flexible core layer materials has great research potential and engineering research value for improving energy absorption performance, reducing the mass of blast-resistant materials, and reducing production costs. It also provides thoughts for the research of biomimetic energy-absorbing materials.

5.
Adv Healthc Mater ; : e2400125, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513154

RESUMO

Microglia-mediated inflammation is involved in the pathogenesis of Alzheimer's disease (AD), whereas human fibroblast growth factor 21 (hFGF21) has demonstrated the ability to regulate microglia activation in Parkinson's disease, indicating a potential therapeutic role in AD. However, challenges such as aggregation, rapid inactivation, and the blood-brain barrier hinder its effectiveness in treating AD. This study develops targeted delivery of hFGF21 to activated microglia using BV2 cell membrane-coated PEGylated liposomes (hFGF21@BCM-LIP), preserving the bioactivity of hFGF21. In vitro, hFGF21@BCM-LIP specifically targets Aß1-42-induced BV2 cells, with uptake hindered by anti-VCAM-1 antibody, indicating the importance of VCAM-1 and integrin α4/ß1 interaction in targeted delivery to BV2 cells. In vivo, following subcutaneous injection near the lymph nodes of the neck, hFGF21@BCM-LIP diffuses into lymph nodes and distributes along the meningeal lymphatic vasculature and brain parenchyma in amyloid-beta (Aß1-42)-induced mice. Furthermore, the administration of hFGF21@BCM-LIP to activated microglia improves cognitive deficits caused by Aß1-42 and reduces levels of tau, p-Tau, and BACE1. It also decreases interleukin-6  (IL-6) and tumor necrosis factor-α (TNF-α) release while increasing interleukin-10 (IL-10) release both in vivo and in vitro. These results indicate that hFGF21@BCM-LIP can be a promising treatment for AD, by effectively crossing the blood-brain barrier and targeting delivery to brain microglia via the neck-meningeal lymphatic vasculature-brain parenchyma pathways.

6.
Environ Pollut ; 334: 122130, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37394054

RESUMO

This study measured the pollution characteristics and ecological and health risks of 19 herbicides found in drinking water sources and their inflowing rivers. The targeted herbicides were prevalent in the study area, but most concentrations were well below 10 ng L-1. Acetochlor and atrazine were the dominant herbicides, although their levels were much lower than previously reported. Total herbicide residual levels were greater in April than in December and increased from upstream to downstream, resulting in the highest pollution levels found in the reservoirs, likely due to herbicides delivered from upstream and dense agricultural planting in the surrounding areas. Only atrazine and ametryn presented moderate ecological risks, while the summed risk quotients (ΣRQs) of each sample were >0.1, indicated that the total herbicide levels represented a moderate risk in all samples. For the human health risks, the risk quotients (RQ) of all target herbicides, the total RQs of each sample, and estimated life-stage RQs were far smaller than the 0.2 threshold, indicating the absence of human health risks when the water was consumed at any stage of life. However, early life stages exhibited 3-6 times higher RQ values than adulthood and should not be overlooked. And crucially, the synergistic or antagonistic effects of mixed herbicides are not well understood, and further research is needed to understand the impact of these herbicides on the ecosystem and human health, particularly possible affects in early life stages, such as infants and children.


Assuntos
Atrazina , Água Potável , Herbicidas , Poluentes Químicos da Água , Criança , Humanos , Adulto , Herbicidas/toxicidade , Herbicidas/análise , Atrazina/toxicidade , Atrazina/análise , Água Potável/análise , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental , China , Medição de Risco
7.
Water Res ; 247: 120795, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37931358

RESUMO

Nanofiltration membranes have increasingly played a vital role in the purification of surface water and the recycling of wastewater. However, the problem of membrane biofouling, which leads to shortened service life and increased energy consumption, has hindered the widespread application of nanofiltration membranes. In this study, we developed functionalized nanofiltration membranes with anti-adhesive and anti-biofouling properties by coordinating FeIII and juglone onto commercial nanofiltration membranes in a facile and viable manner. Due to the hydrophilic nature of the FeⅢ-juglone coating as well as its ultra-thin thickness and minimal impact on the membrane pores, the permeance of the optimally modified membrane even increased slightly (14 %). The outstanding anti-adhesive property of the FeⅢ-juglone coating was demonstrated by a significant reduction in the adsorption of proteins and bacteria. Furthermore, the modified membranes exhibited lower flux decline amplitude and reduced biofilm deposition during dynamic fouling experiment, further supporting the outstanding anti-biofouling performance of the nanofiltration membrane after the modification with FeⅢ-juglone coating. This study presents a novel and feasible approach for simultaneously improving the water permeance, anti-adhesive property and anti-biofouling property of commercial nanofiltration membranes.


Assuntos
Incrustação Biológica , Purificação da Água , Incrustação Biológica/prevenção & controle , Compostos Férricos , Biofilmes , Água , Membranas Artificiais
8.
J Air Waste Manag Assoc ; 73(1): 15-24, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759619

RESUMO

Hyperthermophilic composting (HTC) is regarded as an effective method for processing sewage sludge. The aim of the study was to investigate effects of using biochar as an amendment on the preservation of nitrogen and passivation of heavy metal during the HTC process of sewage sludge. Results showed that HTC improved the fermentation efficiency and the compost maturity by increases in the temperature and germination index (GI) value, and decreases in the moisture and C/N ratio compared to conventional thermophilic composting. HTC process and the biochar addition resulted in a decrease of the nitrogen loss compared with the control pile during composting by promoting transforming ammonium into nitrite nitrogen. Adding biochar to composting inhibited the transformation of Cu, Zn and Pb into more mobile speciation compared to the control pile although their contents increased during composting, which lead to reduction in availability of heavy metals. Thus, HTC process with the addition of biochar is viable for the reduction of the nitrogen losses and mobility of heavy metal in compost.Implications: The treatment of sewage sludge is imminent due to its threat to general health and ecosystems. This work represents the effects of adding biochar on the preservation of nitrogen and passivation of heavy metal during hyperthermophilic composting of sewage sludge. Our results indicate that the additions of biochar and hyperthermophilic composting engendered the several of positive effects on the preservation of nitrogen and passivation of heavy metal. Thus, HTC process with the addition of biochar is viable for the reduction of the nitrogen losses and mobility of heavy metal in compost.


Assuntos
Compostagem , Metais Pesados , Esgotos , Nitrogênio , Ecossistema , Solo , Metais Pesados/análise
9.
Plants (Basel) ; 12(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36840304

RESUMO

Sweet potato virus disease (SPVD) is one of the main virus diseases in sweet potato [Ipomoea batatas (L.) Lam] that seriously affects the yield of sweet potato. Therefore, the establishment of a simple, rapid and effective method to detect SPVD is of great significance for the early warning and prevention of this disease. In this study, the experiment was carried out in two years to compare the grafting method and side grafting method for three sweet potato varieties, and the optimal grafting method was selected. After grafting with seedlings infected with SPVD, the symptomatic diagnosis and serological detection were performed in 86 host varieties, and the differences in SPVD resistance were determined by fluorescence quantitative PCR (qRT-PCR) and nitrocellulose membrane enzyme-linked immunosorbent assay (NCM-ELISA). The results showed that the survival rate of grafting by insertion method was significantly higher than that by side grafting method, and the disease resistance of different varieties to sweet potato virus disease was tested. The detection method established in this study can provide theoretical basis for identification and screening of resistant sweet potato varieties.

10.
Plant Physiol Biochem ; 201: 107815, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301188

RESUMO

As a key enzyme in the starch and sugar metabolic pathways in sweet potato (Ipomoea batatas (L.) Lam.), the vacuolar invertase (EC 3.2.1.26) IbßFRUCT2 is involved in partitioning and modulating the starch and sugar components of the storage root. However, the post-translational regulation of its invertase activity remains unclear. In this study, we identified three invertase inhibitors, IbInvInh1, IbInvInh2, and IbInvInh3, as potential interaction partners of IbßFRUCT2. All were found to act as vacuolar invertase inhibitors (VIFs) and belonged to the plant invertase/pectin methyl esterase inhibitor superfamily. Among the three VIFs, IbInvInh2 is a novel VIF in sweet potato and was confirmed to be an inhibitor of IbßFRUCT2. The N-terminal domain of IbßFRUCT2 and the Thr39 and Leu198 sites of IbInvInh2 were predicted to be engaged in their interactions. The transgenic expression of IbInvInh2 in Arabidopsis thaliana plants reduced the starch content of leaves, while its expression in the Ibßfruct2-expressing Arabidopsis plants increased the starch content of leaves, suggesting that the post-translational inhibition of IbßFRUCT2 activity by IbInvInh2 contributes to the regulation of the plant starch content. Taken together, our findings reveal a novel VIF in sweet potato and provide insights into the potential regulatory roles of the VIFs and invertase-VIF interaction in starch metabolism. These insights lay the foundation for using VIFs to improve the starch properties of crops.


Assuntos
Ipomoea batatas , Amido , Amido/metabolismo , Ipomoea batatas/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , Metabolismo dos Carboidratos , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Water Res ; 243: 120362, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517148

RESUMO

The application of ultrafiltration (UF) technology in algae-laden water is limited due to the serious membrane fouling caused by algal foulants. Herein, a Ferrate/FeSO4(Fe(VI)/Fe(II)) pretreatment was proposed aiming to improve the performance of UF. The results showed that the synergistic of Fe(VI) and Fe(II) significantly increased the zeta potential of Microcystis aeruginosa, which enhanced the agglomerative tendency of algal foulants, and the particle size of flocs remarkably increased due to the in-situ generated Fe(III). Results from dissolved organic carbon (DOC), UV254, K+, and fluorescent spectra indicated that the introduction of Fe(II) avoided the excessive oxidation of Fe(VI) to algal cells and reduced the production of intracellular organic matter (IOM), while the strong coagulation efficiency of in-situ Fe(III) further enhanced the removal effect of algal organics. Meanwhile, the molecular weight distribution showed that macromolecular organics were decomposed into low molecular matters under Fe(VI) oxidation, while the Fe(VI)/Fe(II) process reduced the formation of small molecular matters compared with single Fe(VI) pretreatment. The algal-source fouling was efficaciously mitigated under the optimal experimental condition, the terminal membrane flux could be increased from 0.16 to 0.62, while reversible and irreversible fouling decreased by 67.1% and 64.1%, respectively. Modeling analysis demonstrated that the Fe(VI)/Fe(II) process altered the fouling mechanism by delaying the formation of cake filtration. Membrane interface characterization further indicated that large size algal flocs form a loose cake layer and reduce the deposition of algal pollutants on the membrane surface. The Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory confirmed that the hydrophobic adsorption between the algal foulant and the membrane was weakened, thus relieving the membrane fouling. Overall, this strategy can be considered for application in improving the UF performance and mitigating algal-source membrane fouling.


Assuntos
Ultrafiltração , Purificação da Água , Compostos Férricos , Membranas Artificiais , Ferro , Purificação da Água/métodos , Compostos Ferrosos
12.
J Drug Target ; 30(5): 557-566, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35023434

RESUMO

The lower bioavailability after oral administration limited icariin applications in central nervous system. Icariin/HP-ß-cyclodextrin (HP-ß-CD) inclusion complex was prepared for acute severe opening traumatic brain injury (TBI) via facial intradermal (i.d.) in the mystacial pad. After fluid percussion-induced TBI, icariin/HP-ß-CD at 0.4 mg/kg i.d. preserved more neurons and oligodendrocytes than intranasal injection (i.n.) or intravenous injection via tail vein (i.v.) and decreased microglia and astrocyte activation. Icariin/HP-ß-CD i.d. reduced apoptosis in cortical penumbra while i.n. and i.v. showed weak or no effects. Icariin/HP-ß-CD i.d. reduced Evans blue leakage and altered CD34, ZO-1, Claudin-5, and beta-catenin expression after TBI. Moreover, icariin/HP-ß-CD promoted human umbilical vein endothelial cells proliferation. Thus, Icariin/HP-ß-CD i.d. improved TBI, including blood-brain barrier opening. Fluorescein 5-isothiocyanate (FITC) and 3,3'-Dioctadecyloxacarbocyanine perchlorate (DiOC18(3)) mimic HP-ß-CD and icariin respectively. FITC and DiOC18(3) were similarly delivered to trigeminal epineurium, perineurium and perivascular spaces or tissues, caudal dura mater, and scattered in trigeminal fasciculus, indicating that icariin/HP-ß-CD was delivered to the brain via trigeminal nerve-dura mater-brain pathways. In sum, intradermal injection in mystacial pad might deliver icariin/HP-ß-CD to the brain and icariin/HP-ß-CD improved acute severe opening TBI.


Assuntos
Lesões Encefálicas Traumáticas , beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Dura-Máter , Células Endoteliais , Flavonoides , Fluoresceína-5-Isotiocianato , Humanos , Injeções Intradérmicas , Nervos Periféricos , Solubilidade , beta-Ciclodextrinas/metabolismo , beta-Ciclodextrinas/farmacologia
13.
Acta Biomater ; 122: 111-132, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444802

RESUMO

Diabetic nephropathy (DN) is one of the most serious complications of diabetes mellitus. The combination of insulin (Ins) with liraglutide (Lir) has a greater potential for preventing DN than monotherapy. However, the renal protective effect of the combined Ins/Lir therapy is largely compromised due to their short half-lives after subcutaneous injection. Herein, a glucose-responsive hydrogel was designed in situ forming the dynamic boronic esters bonds between phenylboronic acid-grafted γ-Polyglutamic acid (PBA-PGA) and konjac glucomannan (KGM). It was hypothesized that the KGM/PBA-PGA hydrogel as the delivery vehicle of Ins/Lir would enhance the combinational effect of the latter on preventing the DN progress. Scan electronic microscopy and rheological studies showed that KGM/PBA-PGA hydrogel displayed good glucose-responsive property. Besides, the glucose-sensitive release profile of either Ins or Lir from KGM/PBA-PGA hydrogel was uniformly displayed at hyperglycemic level. Furthermore, the preventive efficacy of KGM/PBA-PGA hydrogel incorporating insulin and liraglutide (Ins/Lir-H) on DN progress was evaluated on streptozotocin-induced rats with diabetic mellitus (DM). At 6 weeks after subcutaneous injection of Ins/Lir-H, not only the morphology of kidneys was obviously recovered as shown by ultrasonography, but also the renal hemodynamics was significantly improved. Meanwhile, the 24-h urinary protein and albumin/creatinine ratio were well modulated. Inflammation and fibrosis were also largely inhibited. Besides, the glomerular NPHS-2 was obviously elevated after treatment with Ins/Lir-H. The therapeutic mechanism of Ins/Lir-H was highly associated with the alleviation of oxidative stress and activation of autophagy. Conclusively, the better preventive effect of the combined Ins/Lir via KGM/PBA-PGA hydrogel on DN progress was demonstrated as compared with their mixed solution, suggesting KGM/PBA-PGA hydrogel might be a potential vehicle of Ins/Lir to combat the progression of DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Glucose , Hidrogéis/farmacologia , Insulina/farmacologia , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Ratos
14.
ACS Appl Mater Interfaces ; 12(5): 5462-5475, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31927945

RESUMO

Islet transplantation has been considered the most promising therapeutic option with the potential to restore the physiological regulation of blood glucose concentrations in type 1 diabetes treatment. However, islets suffer from oxidative stress and nonspecific inflammation in the early stage of transplantation, which attributed to the leading cause of islet graft failure. Our previous study reported that bilirubin exerted antioxidative and anti-inflammatory effects on hypothermic preserved islets, which inspire us to utilize bilirubin to address the survival issue of grafted islets. However, the application of bilirubin for islet transplantation is limited by its poor solubility and fast clearance. In this study, we designed a supramolecular carrier (PLCD) that could improve the solubility of bilirubin and slowly release bilirubin to protect islets after cotransplantation. PLCD was synthesized by conjugating activated ß-cyclodextrin (ß-CD) to the side chain of ε-polylysine (PLL) and acted as a carrier to load bilirubin via host-guest interactions. The constructed bilirubin supramolecular system (PLCD-BR) significantly improved the solubility and prolonged the action time of bilirubin. In vitro results confirmed that PLCD-BR coculture substantially enhanced the resistance of islets to excessive oxidative stress and proinflammatory stimulation and maximumly maintained the islet function. In vivo, PLCD could prolong drug duration at the transplant site, and the localized released bilirubin could protect the islets from oxidative stress and suppress the production of inflammatory cytokines. Crucially, islet transplantation with PLCD-BR significantly extended the stable blood glucose time of diabetic mice and produced a faster glucose clearance compared to those cotransplanted with free bilirubin. Additionally, immunohistochemical analysis showed that PLCD-BR had superior antioxidative and anti-inflammatory abilities and beneficial effects on angiogenesis. These findings demonstrate that the PLCD-BR has great potentials to support successful islet transplantation.


Assuntos
Anti-Inflamatórios/química , Bilirrubina/metabolismo , Estresse Oxidativo , Polilisina/química , beta-Ciclodextrinas/química , Animais , Anti-Inflamatórios/farmacologia , Bilirrubina/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/terapia , Concentração de Íons de Hidrogênio , Inflamação/metabolismo , Inflamação/prevenção & controle , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Transplante das Ilhotas Pancreáticas , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
15.
Appl Opt ; 46(23): 5991-6003, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17694155

RESUMO

A fiber-based reflectance imaging system was constructed to produce in vivo absorption spectroscopic images of biological tissues with diffuse light in the cw domain. The principal part of this system is the 783-channel fiber probe, composed of 253 illumination fibers and 530 detection fibers distributed in a 20x20 mm square region. During illumination with the 253 illumination fibers, diffuse reflected lights are collected by the 530 detection fibers and recorded simultaneously as an image with an electron multiplying CCD camera for fast data acquisition. After signal acquisition, a diffuse reflectance image was reconstructed by applying the spectral normalization method we devised. To test the applicability of the spectral normalization, we conducted two phantom experiments with chicken breast tissue and white Delrin resin by using animal blood as an optical inhomogeneity. In the Delrin phantom experiment, we present images produced by two methods, spectral normalization and reference signal normalization, along with a comparison of the two. To show the feasibility of our system for biomedical applications, we took images of a human vein in vivo with the spectral normalization method.


Assuntos
Músculos/diagnóstico por imagem , Óptica e Fotônica , Animais , Calibragem , Galinhas , Difusão , Elétrons , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador , Modelos Estatísticos , Imagens de Fantasmas , Radiografia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA