Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Orthop Trauma Surg ; 143(2): 665-675, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34398279

RESUMO

INTRODUCTION: The purpose of this study is to report the radiologic and clinical outcomes of arthroscopic intervention for isolated posterosuperior paralabral cysts and simultaneous treatment of cysts combined with associated shoulder pathologies. MATERIALS AND METHODS: From March 2008 through December 2016, 70 cases (48 males and 22 females) operated on for symptomatic posterosuperior paralabral cysts were included. Mean age was 45 (range 18-69). These patients were classified into two groups depending on if they had accompanying lesions: Group I (isolated group, 27 patients) and Group II (concomitant group, 43 patients). Arthroscopic cyst decompression with a labral repair or posterior capsulotomy for patients without labral tear were performed. All concomitant pathologies were also operated simultaneously. Follow-up MRI were performed at postoperative 6 months and clinical outcomes were evaluated during the follow-up. RESULTS: Arthroscopic all intra-articular cyst decompression and labral repair was performed on 67 patients. In three patients, posterior capsulotomy without labral repair was performed for cyst removal. For 43 patients with concomitant lesions, 31 rotator cuff repairs, three SLAP repairs along with biceps tenodesis, two distal clavicle resections due to A-C joint arthritis, one calcific deposit removal, four Bankart repairs, and two acromioplasties were performed. The follow-up MRI showed complete cyst resorption except for two patients. The mean VAS, ASES, UCLA, SST and CS scores significantly improved at the last follow-up. Although both groups showed significantly improved range of motion after the surgery, improvement of ROM in Group II lagged at early periods of the rehabilitation. CONCLUSIONS: Arthroscopic labral repair with all intra-articular cysts decompression or simple posterior capsulotomy were both effective treatment modalities. If paralabral cysts were associated with other shoulder lesions, simultaneous treatment of combined lesions could be performed for the improved clinical outcomes at final follow-up with expected lag in the early rehabilitation period. LEVEL OF EVIDENCE: Level III, Retrospective Comparative Trial, Treatment Study.


Assuntos
Cistos , Lesões do Ombro , Articulação do Ombro , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Ombro , Estudos Retrospectivos , Articulação do Ombro/cirurgia , Cistos/complicações , Cistos/cirurgia , Resultado do Tratamento , Artroscopia , Amplitude de Movimento Articular
2.
Cell Biol Int ; 45(7): 1523-1532, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33724613

RESUMO

Radiotherapy is a leading treatment for various types of cancer. However, exposure to high-dose ionizing radiation causes acute gastrointestinal injury and gastrointestinal syndrome. This has significant implications for human health, and therefore, radioprotection is a major area of research. Radiation induces the loss of intestinal stem cells; hence, the protection of stem cells expressing LGR5 (a marker of intestinal epithelial stem cells) is a key strategy for the prevention of radiation-induced injury. In this study, we identified valproic acid (VPA) as a potent radioprotector using an intestinal organoid culture system. VPA treatment increased the number of LGR5+ stem cells and organoid regeneration after irradiation. N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT, an inhibitor of NOTCH signaling) blocked the radioprotective effects of VPA, indicating that NOTCH signaling is a likely mechanism underlying the observed effects of VPA. In addition, VPA acted as a radiosensitizer via the inhibition of histone deacetylase (HDAC) in a colorectal cancer organoid. These results demonstrate that VPA exerts strong protective effects on LGR5+ stem cells via NOTCH signaling and that the inhibition of NOTCH signaling reduces these protective effects, providing a basis for the improved management of radiation injury.


Assuntos
Neoplasias/radioterapia , Organoides/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Lesões por Radiação/tratamento farmacológico , Ácido Valproico/farmacologia , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Notch/metabolismo
3.
Arch Orthop Trauma Surg ; 141(11): 1889-1897, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33125547

RESUMO

PURPOSE: Comminuted inferior pole fractures of the patella are notorious fractures where it is difficult to obtain rigid internal fixation by conventional tension band wiring. The purpose of this study is to evaluate the clinical and radiological outcomes of the suture bridge anchor fixation for these comminuted inferior pole fractures of the patella. METHODS: From March 2012 to December 2018, suture bridge anchor fixation for the inferior pole comminuted fracture of the patella was performed in 22 patients. There were 21 patients of inferior pole comminuted fracture and 1 patient of lower periosteal sleeve avulsion fracture. Clinical outcomes including SF-36 score, Knee injury and osteoarthritis outcome score (KOOS) and post-operative range of motion were evaluated. In all patients, suture bridge anchor fixation was performed and, tension band wiring with K wire was added for large fragment fixation in two patients. We evaluated bony union, the patellar height using Insall-Salvati ratio and its complications. RESULTS: Mean age was 46 ± 20 (15-82) years. Mean follow-up period was 25 ± 18 (11-74) months. In all patients, bony union was achieved at postoperative 4 months. At final follow-up, mean SF-36 score was 72 ± 15 (30-91) points and KOOS score was 66.7 ± 16 (43-97). The average range of motion was 134 ± 5 (125-140) degrees. As a complication, one patient developed a wound infection and subsequent osteomyelitis of inferior pole fracture fragment. Compared to the normal knee, the Insall-Salvati ratio of the injured knee averages 0.73 and this smaller ratio less than 0.8 meant patella baja. CONCLUSIONS: In the comminuted inferior pole fractures of the patella, suture bridge anchor fixation showed good bony union and satisfactory clinical outcomes at the short-term follow-up and could be a satisfactory alternative treatment option. Even though suture bridge anchor fixation in these fractures caused decreased Insall-Salvati ratio (patella height), any patellofemoral pain and limited range of motion was not developed. LEVEL OF EVIDENCE: Level IV.


Assuntos
Fraturas Cominutivas , Traumatismos do Joelho , Adulto , Idoso , Fios Ortopédicos , Fixação Interna de Fraturas , Fraturas Cominutivas/diagnóstico por imagem , Fraturas Cominutivas/cirurgia , Humanos , Articulação do Joelho , Pessoa de Meia-Idade , Patela/diagnóstico por imagem , Patela/cirurgia , Estudos Retrospectivos , Âncoras de Sutura , Suturas , Resultado do Tratamento
4.
Biochim Biophys Acta ; 1863(7 Pt A): 1601-11, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27102539

RESUMO

Epithelial-mesenchymal transition (EMT) is essential for increased invasion and metastasis during cancer progression. Among the candidate EMT-regulating microRNAs that we previously identified, miR-181b-3p was found to induce EMT in MCF7 breast cancer cells, as indicated by an EMT-characteristic morphological change, increased invasiveness, and altered expression of an EMT marker. Transfection with a miR-181b-3p inhibitor reduced the expression of mesenchymal markers and the migration and invasion of highly invasive breast cancer cells. miR-181b-3p induced the upregulation of Snail, a master EMT inducer and transcriptional repressor of E-cadherin, through protein stabilization. YWHAG was identified as a direct target of miR-181b-3p, downregulation of which induced Snail stabilization and EMT phenotypes. Ectopic expression of YWHAG abrogated the effect of miR-181b-3p, including Snail stabilization and the promotion of invasion. In situ hybridization and immunohistochemical analyses indicated that YWHAG expression was inversely correlated with the expression of miR-181b-3p and Snail in human breast cancer tissues. Furthermore, transfection with miR-181b-3p increased the frequency of metastatic nodule formation in the lungs of mice in experimental metastasis assays using MDA-MB-231 cells. Taken together, our data suggest that miR-181b-3p functions as a metastasis activator by promoting Snail-induced EMT, and may therefore be a therapeutic target in metastatic cancers.


Assuntos
Proteínas 14-3-3/metabolismo , Neoplasias da Mama/enzimologia , Transição Epitelial-Mesenquimal , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Proteínas 14-3-3/genética , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Fenótipo , Estabilidade Proteica , Transdução de Sinais , Fatores de Transcrição da Família Snail , Fatores de Tempo , Fatores de Transcrição/genética , Transfecção
5.
Biochim Biophys Acta ; 1862(10): 1926-37, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27475256

RESUMO

MicroRNAs (miRNAs) play pivotal roles in tumorigenesis as either tumor suppressors or oncogenes. In the present study, we discovered and demonstrated the tumor suppressive function of a novel miRNA miR-5582-5p. miR-5582-5p induced apoptosis and cell cycle arrest in cancer cells, but not in normal cells. GAB1, SHC1, and CDK2 were identified as direct targets of miR-5582-5p. Knockdown of GAB1/SHC1 or CDK2 phenocopied the apoptotic or cell cycle arrest-inducing function of miR-5582-5p, respectively. The expression of miR-5582-5p was lower in tumor tissues than in adjacent normal tissues of colorectal cancer patients, while the expression of the target proteins exhibited patterns opposite to that of miR-5582-5p. Intratumoral injection of a miR-5582-5p mimic or induced expression of miR-5582-5p in tumor cells suppressed tumor growth in HCT116 xenografts. Collectively, our results suggest a novel tumor suppressive function for miR-5582-5p and its potential applicability for tumor control.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Apoptose , Pontos de Checagem do Ciclo Celular , Quinase 2 Dependente de Ciclina/biossíntese , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , MicroRNAs/biossíntese , Proteínas de Neoplasias/biossíntese , Neoplasias/metabolismo , RNA Neoplásico/biossíntese , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/biossíntese , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Quinase 2 Dependente de Ciclina/genética , Células HCT116 , Humanos , MicroRNAs/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , RNA Neoplásico/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética
6.
Biochim Biophys Acta ; 1843(3): 508-16, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24316134

RESUMO

MicroRNAs (miRNAs) play an important role in various stages of tumor progression. miR-494, which we had previously identified as a miRNA induced by ionizing radiation (IR) in the glioma cell line U-251, was observed to enhance invasion of U-251 cells by activating MMP-2. The miR-494-induced invasive potential was accompanied by, and dependent on, epidermal growth factor receptor (EGFR) upregulation and the activation of its downstream signaling constituents, Akt and ERK. The upregulation of EGFR by miR-494 involved the suppression of lysosomal protein turnover. Among the putative target proteins tested, p190B RhoGAP (p190B) was downregulated by miR-494, and its reduced expression was responsible for the increase in EGFR expression. A reporter assay using a luciferase construct containing p190B 3'-untranslated region (3'UTR) confirmed that p190B is a direct target of miR-494. Downregulation of p190B by small interfering RNA (siRNA) transfection closely mimicked the outcomes of miR-494 transfection, and showed increased EGFR expression, MMP-2 secretion, and invasion. Ectopic expression of p190B suppressed the miR-494-induced EGFR upregulation and invasion promotion, thereby suggesting that p190B depletion is critical for the invasion-promoting action of miR-494. Collectively, our results suggest a novel function for miR-494 and its potential application as a target to control invasiveness in cancer therapy.


Assuntos
Receptores ErbB/genética , Proteínas Ativadoras de GTPase/genética , Glioma/genética , Glioma/patologia , MicroRNAs/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação para Baixo , Elafina/genética , Elafina/metabolismo , Receptores ErbB/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Radiação Ionizante , Transdução de Sinais , Regulação para Cima
7.
Biochem Biophys Res Commun ; 450(1): 704-10, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24946210

RESUMO

3-Hydroxy-3',4'-dimethoxyflavone (HDMF) is a natural chemical product that is not currently regarded as a drug. In our study, we employed glioblastoma cells and cell biology and biochemistry approaches to investigate the potential of HDMF as a natural anticancer therapy option. FACS analysis showed that treatment concentration of HDMF does not exert cytotoxicity on U251 cells. Wound-healing and invasion assays showed that HDMF dose-dependently decreased the migratory and invasive potentials of these cells, likely by indirectly inhibiting MMP-3 activity as a result of the inhibition of p38 and ERK signaling proteins - an effect of HDMF also shown by Western blotting. HDMF inhibits Bcl-w-induced neurosphere formation and the expression of glioma stem cell markers, such as Musashi, Sox-2 and c-myc. These results indicate that HDMF suppresses migratory or invasive potentials and stemness and functions as a negative agent against the aggressiveness of glioblastoma cells. We propose that HDMF has potential as anticancer drug for inhibiting the aggressiveness of glioblastoma multiforme (GBM).


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Flavonas/administração & dosagem , Glioblastoma/patologia , Glioblastoma/fisiopatologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/fisiologia , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioblastoma/tratamento farmacológico , Humanos , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Resultado do Tratamento
8.
Front Oncol ; 14: 1395244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562171

RESUMO

[This corrects the article DOI: 10.3389/fonc.2022.945057.].

9.
Apoptosis ; 18(7): 896-909, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23546867

RESUMO

The functions of microRNAs (miRNAs) as either oncogenes or tumor suppressors in regulating cancer-related events have been established. We analyzed the alterations in the miRNA expression profile of the glioma cell line U-251 caused by ionizing radiation (IR) by using an miRNA array and identified several miRNAs whose expression was significantly affected by IR. Among the IR-responsive miRNAs, we further examined the function of miR-193a-3p, which exhibited the most significant growth-inhibiting effect. miR-193a-3p was observed to induce apoptosis in both U-251 and HeLa cells. We also demonstrated that miR-193a-3p induces the accumulation of intracellular reactive oxygen species (ROS) and DNA damage as determined by the level of γH2AX and by performing the comet assay. The induction of both apoptosis and DNA damage by miR-193a-3p was blocked by antioxidant treatment, indicating the crucial role of ROS in the action of miR-193a-3p. Among the putative target proteins, the expression of Mcl-1, an anti-apoptotic Bcl-2 family member, decreased because of miR-193a-3p transfection. A reporter assay using a luciferase construct containing the 3'-untranslated region of Mcl-1 confirmed that Mcl-1 is a direct target of miR-193a-3p. Down-regulation of Mcl-1 by siRNA transfection closely mimicked the outcome of miR-193a-3p transfection showing increased ROS, DNA damage, cytochrome c release, and apoptosis. Ectopic expression of Mcl-1 suppressed the pro-apoptotic action of miR-193a-3p, suggesting that Mcl-1 depletion is critical for miR-193a-3p induced apoptosis. Collectively, our results suggest a novel function for miR-193a-3p and its potential application in cancer therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos da radiação , MicroRNAs/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Citocromos c/metabolismo , Fragmentação do DNA/efeitos da radiação , Raios gama , Genes Reporter , Histonas/genética , Histonas/metabolismo , Humanos , Luciferases , MicroRNAs/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
10.
Arthrosc Tech ; 12(12): e2161-e2168, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38196859

RESUMO

Revision repair of retorn partial articular supraspinatus tendon avulsion (PASTA) lesion is difficult for poor tendon quality without tear completion and repair. Trans-tendon suture bridge repair with biceps tendon augmentation can preserve the intact bursal side cuff attachment and has shown satisfactory clinical outcomes. Moreover, trans-tendon suture bridge rotator cuff repair technique, along with biceps tendon augmentation, reinforces high-grade PASTA lesions by moving the tenotomized biceps tendon into the torn articular side cuff defect with added advantage of blood supply through the tenotomized biceps tendon graft. Retear after trans-tendon repair of high-grade PASTA lesions was rare, and its poor tendon quality cause the revision repair to be too difficult. Without tear completion and rotator cuff repair, this arthroscopic trans-tendon suture bridge rotator cuff repair with biceps tendon augmentation is a reliable procedure that could be expected to produce improved short-term functional and radiologic outcomes, along with improved tendon quality of repaired tendon.

11.
Front Oncol ; 12: 945057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059697

RESUMO

MicroRNAs are key regulators of gene expression in tumorigenesis. In this study, we investigated the tumor-suppressive function of miR-31-3p. Analysis of the Gene Expression Omnibus database revealed that the expression of miR-31-3p in prostate cancer tissues is lower than that in adjacent normal tissues from patients with prostate cancer. Moreover, miR-31-3p induces apoptosis in DU145, PC-3, and LNCap prostate cancer cells, while those transfected with miR-31-3p exhibit significantly decreased cell proliferation, migration, invasiveness, and tumor sphere-forming ability, as determined using the cell counting kit-8, transwell, and sphere-forming assays. Further analysis revealed that GABBR2 is a direct target of miR-31-3p. Within a DU145 xenograft murine model, intratumoral injection of a miR-31-3p mimic suppresses tumor growth. Taken together, the findings of this study suggest that miR-31-3p performs a novel tumor-suppressive function in prostate cancer and may represent a novel target for anti-prostate cancer miRNA therapeutics.

12.
J Biol Chem ; 284(27): 18503-14, 2009 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-19416983

RESUMO

Recent evidence suggests that extranuclear action of retinoid receptors is involved in mediating the pleiotropic effects of retinoids. However, whether they reside in the cytoplasm remains elusive. Here, we showed that retinoic acid receptor-gamma (RARgamma) was cytoplasmic in confluent cells, or when cells were released from serum depletion or treated with growth factors. In studying the regulation of RARgamma subcellular localization, we observed that ectopically overexpressed RARgamma was mainly cytoplasmic irrespective of serum concentration and cell density. The cytoplasmic retention of RARgamma was inhibited by ligand retinoic acid (RA). In addition, coexpression of retinoid X receptor-alpha (RXRalpha) resulted in nuclear localization of RARgamma through their heterodimerization. Mutagenesis studies revealed that a C-terminal fragment of RXRalpha potently prevents RA-induced RARgamma nuclear localization and transcriptional function. Furthermore, our results showed that the cytoplasmic retention of RARgamma was due to the presence of its unique N-terminal A/B domain, which was subject to regulation by p38 MAPK-mediated phosphorylation. Deletion or mutation of the N-terminal A/B domain largely impaired its cytoplasmic localization. Together, our data demonstrate that the subcellular localization of RARgamma is regulated by complex interactions among ligand binding, receptor phosphorylation, and receptor dimerizations.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Transporte Proteico/fisiologia , Receptores do Ácido Retinoico/química , Receptores do Ácido Retinoico/metabolismo , Proteínas Sanguíneas/farmacologia , Contagem de Células , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Núcleo Celular/metabolismo , Meios de Cultura/farmacologia , Citoplasma/metabolismo , Dimerização , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Rim/citologia , Mutagênese , Fosforilação/fisiologia , Estrutura Terciária de Proteína , Receptores do Ácido Retinoico/genética , Receptor X Retinoide alfa/metabolismo , Relação Estrutura-Atividade , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptor gama de Ácido Retinoico
13.
Mol Cancer Res ; 7(3): 371-82, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19276188

RESUMO

Functional suppression of spindle checkpoint protein activity results in apoptotic cell death arising from mitotic failure, including defective spindle formation, chromosome missegregation, and premature mitotic exit. The recently identified p31(comet) protein acts as a spindle checkpoint silencer via communication with the transient Mad2 complex. In the present study, we found that p31(comet) overexpression led to two distinct phenotypic changes, cellular apoptosis and senescence. Because of a paucity of direct molecular link of spindle checkpoint to cellular senescence, however, the present report focuses on the relationship between abnormal spindle checkpoint formation and p31(comet)-induced senescence by using susceptible tumor cell lines. p31(comet)-induced senescence was accompanied by mitotic catastrophe with massive nuclear and chromosomal abnormalities. The progression of the senescence was completely inhibited by the depletion of p21(Waf1/Cip1) and partly inhibited by the depletion of the tumor suppressor protein p53. Notably, p21(Waf1/Cip1) depletion caused a dramatic phenotypic conversion of p31(comet)-induced senescence into cell death through mitotic catastrophe, indicating that p21(Waf1/Cip1) is a major mediator of p31(comet)-induced cellular senescence. In contrast to wild-type p31(comet), overexpression of a p31 mutant lacking the Mad2 binding region did not cause senescence. Moreover, depletion of Mad2 by small interfering RNA induced senescence. Here, we show that p31(comet) induces tumor cell senescence by mediating p21(Waf1/Cip1) accumulation and Mad2 disruption and that these effects are dependent on a direct interaction of p31(comet) with Mad2. Our results could be used to control tumor growth.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/metabolismo , Senescência Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas Nucleares/biossíntese , Proteínas Repressoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Células Clonais , DNA/metabolismo , Humanos , Proteínas Mad2 , Mitose/fisiologia , Proteínas Nucleares/genética , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Transdução de Sinais , Fuso Acromático/genética , Fuso Acromático/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , beta-Galactosidase/biossíntese
14.
Biochem Biophys Res Commun ; 402(2): 198-202, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20875790

RESUMO

A combination of a radiotherapeutic regimen with telomerase inhibition is valuable when tumor cells are to be sensitized to radiation. Here, we describe cell clones unresponsive to radiosensitization after telomere shortening. After extensive division of individual transformed clones of mTERC-/- cells, about 22% of clones were unresponsive to radiosensitization even though telomerase action was inhibited. The telomere lengths of unsensitized mTERC-/- clones were reduced, as were those of most sensitized clones. However, the unsensitized clones did not exhibit chromosomal end-to-end fusion to the extent noted in all sensitized clones. Thus, a defense mechanism preventing telomere erosion is operative even when telomeres become shorter under conditions of telomerase deficiency, and results in unresponsiveness to the radiosensitization generally mediated by telomere shortening.


Assuntos
Tolerância a Radiação , Telomerase/antagonistas & inibidores , Telômero/metabolismo , Animais , Células Clonais , Fibroblastos/enzimologia , Fibroblastos/efeitos da radiação , Camundongos , Camundongos Mutantes , Telomerase/genética
15.
Int J Oncol ; 57(6): 1307-1318, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33173975

RESUMO

Enhancing the radioresponsiveness of colorectal cancer (CRC) is essential for local control and prognosis. However, consequent damage to surrounding healthy cells can lead to treatment failure. We hypothesized that short­chain fatty acids (SCFAs) could act as radiosensitizers for cancer cells, allowing the administration of a lower and safer dose of radiation. To test this hypothesis, the responses of three­dimensional­cultured organoids, derived from CRC patients, to radiotherapy, as well as the effects of combined radiotherapy with the SCFAs butyrate, propionate and acetate as candidate radiosensitizers, were evaluated via reverse transcription­quantitative polymerase chain reaction, immunohistochemistry and organoid viability assay. Of the three SCFAs tested, only butyrate suppressed the proliferation of the organoids. Moreover, butyrate significantly enhanced radiation­induced cell death and enhanced treatment effects compared with administration of radiation alone. The radiation­butyrate combination reduced the proportion of Ki­67 (proliferation marker)­positive cells and decreased the number of S phase cells via FOXO3A. Meanwhile, 3/8 CRC organoids were found to be non­responsive to butyrate with lower expression levels of FOXO3A compared with the responsive cases. Notably, butyrate did not increase radiation­induced cell death and improved regeneration capacity after irradiation in normal organoids. These results suggest that butyrate could enhance the efficacy of radiotherapy while protecting the normal mucosa, thus highlighting a potential strategy for minimizing the associated toxicity of radiotherapy.


Assuntos
Ácido Butírico/administração & dosagem , Quimiorradioterapia Adjuvante/métodos , Neoplasias do Colo/terapia , Proteína Forkhead Box O3/metabolismo , Neoplasias Retais/terapia , Idoso , Idoso de 80 Anos ou mais , Técnicas de Cultura de Células , Colectomia , Colo/citologia , Colo/efeitos dos fármacos , Colo/patologia , Colo/efeitos da radiação , Neoplasias do Colo/patologia , Colonoscopia , Feminino , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Organoides , Protectomia , Neoplasias Retais/patologia , Reto/citologia , Reto/efeitos dos fármacos , Reto/patologia , Reto/efeitos da radiação
16.
Int J Oncol ; 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31485593

RESUMO

MicroRNAs (miRNAs/miRs) are a class of small non­coding RNAs that play pivotal roles in cancer physiology as important epigenetic regulators of gene expression. Several miRNAs have been previously discovered that regulate the proliferation of the colorectal cancer (CRC) cell line HCT116. In the present study, one of these miRNAs, miR­5191, was characterized as a tumor suppressor in CRC cells. Transfection with miR­5191 led to a significant decrease in cell proliferation, invasiveness, tumor sphere­forming ability and tumor organoid growth, as determined via trypan blue, Transwell, sphere culture and organoid culture assays, respectively. Flow cytometric analyses revealed that miR­5191 induced the cell cycle arrest and apoptosis of CRC cells. Additionally, the expression of miR­5191 was downregulated in CRC tumor tissues compared with in normal tissues, as measured by reverse transcription­quantitative PCR analysis. Ribosomal protein S6 kinase ß1 (RPS6KB1) was identified as a direct target of miR­5191. Ectopic expression of RPS6KB1 suppressed the function of miR­5191. Intratumoral injection of miR­5191 mimic suppressed tumor growth in HCT116 xenografts. These findings suggested a novel tumor­suppressive function for miR­5191 in CRC, and its potential applicability for the development of anticancer miRNA therapeutics.

17.
Cell Death Dis ; 9(6): 640, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844307

RESUMO

Although evidence has emerged to suggest that YAP overexpression is a crucial factor for tumor progression and resistance to targeted drugs in multiple cancers, the miRNA-mediated YAP regulation is still unclear. Here we show that the novel miR-550a-3-5p acts as a tumor suppressor and reverses BRAF inhibitor resistance through the direct targeting of YAP. Our data showed that the miR-550a-3-5p suppressed cell proliferation, metastasis, and tumor sphere formation through the direct inhibition of YAP and its oncogenic pathway in various cancer cell types. In addition, we showed that the YAP signature was associated with poor survival of colon cancer and identified an inverse correlation between miR-550a-3-5p and YAP in colon cancer tissues. Interestingly, this inverse correlation was regulated in a density-dependent manner. Furthermore, high levels of miR-550a-3-5p were associated with a good prognosis of esophageal cancer, which was suggestive of the clinical relevance of miR-550a-3-5p-mediated YAP regulation in multiple cancers. Importantly, we demonstrated that miR-550a-3-5p treatment sensitized vemurafenib-resistant colon and melanoma cells through YAP inhibition with reduced AKT activity. Moreover, the tumor-suppressive activity of miR-550a-3-5p and its sensitization effect for vemurafenib resistance were also observed in tumor xenograft models. Collectively, our data suggest that miR-550a-3-5p acts as a tumor suppressor through the targeting of oncogenic YAP and may be a new therapeutic tool for YAP-mediated BRAF inhibitor resistance in BRAF-mutant cancer cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Resistencia a Medicamentos Antineoplásicos , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Mutação/genética , Invasividade Neoplásica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Proteínas de Sinalização YAP
18.
J Med Chem ; 50(11): 2622-39, 2007 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-17489579

RESUMO

Apoptotic and antiproliferative activities of small heterodimer partner (SHP) nuclear receptor ligand (E)-4-[3'-(1-adamantyl)-4'-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC), which was derived from 6-[3'-(1-adamantyl)-4'-hydroxyphenyl]-2-naphthalenecarboxylic acid (AHPN), and several carboxyl isosteric or hydrogen bond-accepting analogues were examined. 3-Cl-AHPC continued to be the most effective apoptotic agent, whereas tetrazole, thiazolidine-2,4-dione, methyldinitrile, hydroxamic acid, boronic acid, 2-oxoaldehyde, and ethyl phosphonic acid hydrogen bond-acceptor analogues were inactive or less efficient inducers of KG-1 acute myeloid leukemia and MDA-MB-231 breast, H292 lung, and DU-145 prostate cancer cell apoptosis. Similarly, 3-Cl-AHPC was the most potent inhibitor of cell proliferation. 4-[3'-(1-adamantyl)-4'-hydroxyphenyl]-3-chlorophenyltetrazole, (2E)-5-{2-[3'-(1-adamantyl)-2-chloro-4'-hydroxy-4-biphenyl]ethenyl}-1H-tetrazole, 5-{4-[3'-(1-adamantyl)-4'-hydroxyphenyl]-3-chlorobenzylidene}thiazolidine-2,4-dione, and (3E)-4-[3'-(1-adamantyl)-2-chloro-4'-hydroxy-4-biphenyl]-2-oxobut-3-enal were very modest inhibitors of KG-1 proliferation. The other analogues were minimal inhibitors. Fragment-based QSAR analyses relating the polar termini with cancer cell growth inhibition revealed that length and van der Waals electrostatic surface potential were the most influential features on activity. 3-Cl-AHPC and the 3-chlorophenyltetrazole and 3-chlorobenzylidenethiazolidine-2,4-dione analogues were also able to inhibit SHP-2 protein-tyrosine phosphatase, which is elevated in some leukemias. 3-Cl-AHPC at 1.0 microM induced human microvascular endothelial cell apoptosis but did not inhibit cell migration or tube formation.


Assuntos
Adamantano/análogos & derivados , Antineoplásicos/síntese química , Apoptose , Cinamatos/síntese química , Proteínas Tirosina Fosfatases/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Retinoides/síntese química , Adamantano/síntese química , Adamantano/farmacologia , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Cinamatos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Humanos , Técnicas In Vitro , Microcirculação/citologia , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Relação Quantitativa Estrutura-Atividade , Ensaio Radioligante , Receptores Citoplasmáticos e Nucleares/biossíntese , Retinoides/farmacologia , Estereoisomerismo
19.
Exp Mol Med ; 39(4): 508-13, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17934339

RESUMO

Failure of mitotic checkpoint machinery leads to the chromosomal missegregation and nuclear endoreduplication, thereby driving the emergence of aneuploidy and tetraploidy population. Although abnormal nuclear ploidy and the resulting impairment of mitotic checkpoint function are typical physiological event leading to human hepatocellular carcinoma, any mutational change of mitotic checkpoint regulators has not yet been discovered. Therefore, we investigated the mutation of p31(comet), a recently identified mitotic checkpoint regulator, in human hepatocellular carcinoma. Of 51 human hepatocellular carcinoma tissue and 6 cell lines tested, five samples exhibited nucleotide sequence variations dispersed on four sites within the entire coding sequence. Among these sites with sequence substitutions, three were found to be missense mutation accompanied with amino acid change but one was a silent mutation. Of these sequence substitutions, two were present in both tumor and non-tumor liver tissues, suggesting the possibility of polymorphism. The present findings indicate that p31(comet) does not have an impact on the formation of aneuploidy and tetraploidy found in human hepatocellular carcinoma.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Carcinoma Hepatocelular/metabolismo , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Neoplasias Hepáticas/metabolismo , Mutação , Proteínas Repressoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Carcinoma Hepatocelular/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/genética , Proteínas Mad2 , Proteínas Nucleares , Poliploidia
20.
Mol Cell Biol ; 23(23): 8651-67, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14612408

RESUMO

TR3, also known as NGFI-B or nur77, is an immediate-early response gene and an orphan member of the steroid/thyroid/retinoid receptor superfamily. We previously reported that TR3 expression was induced by apoptotic stimuli and was required for their apoptotic effect in lung cancer cells. Here, we present evidence that TR3 was also induced by epidermal growth factor (EGF) and serum and was required for their mitogenic effect in lung cancer cells. Ectopic expression of TR3 in both H460 and Calu-6 lung cancer cell lines promoted their cell cycle progression and BrdU incorporation, while inhibition of TR3 expression by the small interfering RNA approach suppressed the mitogenic effect of EGF and serum. Analysis of TR3 mutants showed that both TR3 DNA binding and transactivation were required for its mitogenic effect. In contrast, they were dispensable for its apoptotic activity. Furthermore, confocal microscopy analysis demonstrated that TR3 functioned in the nucleus to induce cell proliferation, whereas it acted on mitochondria to induce apoptosis. In examining the signaling that regulates the mitogenic function of TR3, we observed that coexpression of constitutive-active MEKK1 inhibited TR3 transcriptional activity and TR3-induced proliferation. The inhibitory effect of MEKK1 was mediated through activation of Jun N-terminal kinase, which efficiently phosphorylated TR3, resulting in loss of its DNA binding. Together, our results demonstrate that TR3 is capable of inducing both proliferation and apoptosis in the same cells depending on the stimuli and its cellular localization.


Assuntos
Neoplasias Pulmonares/metabolismo , MAP Quinase Quinase Quinase 1 , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Apoptose , Sequência de Bases , Linhagem Celular Tumoral , Meios de Cultura , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mitose/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Frações Subcelulares/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA