Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 115: 69-81, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29627578

RESUMO

Adult neurogenesis is involved in certain hippocampus-dependent cognitive functions and is linked to psychiatric diseases including intellectual disabilities. The Coffin-Lowry syndrome (CLS) is a developmental disorder caused by mutations in the Rsk2 gene and characterized by intellectual disabilities associated with growth retardation. How RSK2-deficiency leads to cognitive dysfunctions in CLS is however poorly understood. Here, using Rsk2 Knock-Out mice, we characterized the impact of RSK2 deficiency on adult hippocampal neurogenesis in vivo. We report that the absence of RSK2 does not affect basal proliferation, differentiation and survival of dentate gyrus adult-born neurons but alters the maturation progression of young immature newborn neurons. Moreover, when RSK2-deficient mice were submitted to spatial learning, in contrast to wild-type mice, proliferation of adult generated neurons was decreased and no pro-survival effect of learning was observed. Thus, learning failed to recruit a selective population of young newborn neurons in association with deficient long-term memory recall. Given the proposed role of the dentate gyrus and of adult-generated newborn neurons in hippocampal-dependent pattern separation function, we explored this function in a delayed non-matching to place task and in an object-place pattern separation task and report severe deficits in spatial pattern separation in Rsk2-KO mice. Together, this study reveals a previously unknown role for RSK2 in the early stages of maturation and learning-dependent involvement of adult-born dentate gyrus neurons. These alterations associated with a deficit in the ability of RSK2-deficient mice to finely discriminate relatively similar spatial configurations, may contribute to cognitive dysfunction in CLS.


Assuntos
Síndrome de Coffin-Lowry/fisiopatologia , Modelos Animais de Doenças , Hipocampo/fisiopatologia , Neurogênese/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/deficiência , Comportamento Espacial/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Síndrome de Coffin-Lowry/genética , Hipocampo/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
2.
J Immunol ; 195(9): 4264-72, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26401001

RESUMO

Langerhans cells (LC), the dendritic cells of the epidermis, are distributed in a distinctive regularly spaced array. In the mouse, the LC array is established in the first few days of life from proliferating local precursors, but the regulating signaling pathways are not fully understood. We found that mice lacking the kinase phosphoinositide-dependent kinase 1 selectively lack LC. Deletion of the phosphoinositide-dependent kinase 1 target kinases, ribosomal S6 kinase 1 (Rsk1) and Rsk2, produced a striking perturbation in the LC network: LC density was reduced 2-fold, but LC size was increased by the same magnitude. Reduced LC numbers in Rsk1/2(-/-) mice was not due to accelerated emigration from the skin but rather to reduced proliferation at least in adults. Rsk1/2 were required for normal LC patterning in neonates, but not when LC were ablated in adults and replaced by bone marrow-derived cells. Increased LC size was an intrinsic response to reduced LC numbers, reversible on LC emigration, and could be observed in wild type epidermis where LC size also correlated inversely with LC density. Our results identify a key signaling pathway needed to establish a normal LC network and suggest that LC might maintain epidermal surveillance by increasing their "footprint" when their numbers are limited.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Proliferação de Células , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Animais , Animais Recém-Nascidos , Contagem de Células , Movimento Celular , Tamanho Celular , Células Cultivadas , Células Epidérmicas , Epiderme/metabolismo , Citometria de Fluxo , Células de Langerhans/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
3.
Circ Res ; 112(1): 128-39, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22997248

RESUMO

RATIONALE: Cardiac myocyte hypertrophy is the main compensatory response to chronic stress on the heart. p90 ribosomal S6 kinase (RSK) family members are effectors for extracellular signal-regulated kinases that induce myocyte growth. Although increased RSK activity has been observed in stressed myocytes, the functions of individual RSK family members have remained poorly defined, despite being potential therapeutic targets for cardiac disease. OBJECTIVE: To demonstrate that type 3 RSK (RSK3) is required for cardiac myocyte hypertrophy. METHODS AND RESULTS: RSK3 contains a unique N-terminal domain that is not conserved in other RSK family members. We show that this domain mediates the regulated binding of RSK3 to the muscle A-kinase anchoring protein scaffold, defining a novel kinase anchoring event. Disruption of both RSK3 expression using RNA interference and RSK3 anchoring using a competing muscle A-kinase anchoring protein peptide inhibited the hypertrophy of cultured myocytes. In vivo, RSK3 gene deletion in the mouse attenuated the concentric myocyte hypertrophy induced by pressure overload and catecholamine infusion. CONCLUSIONS: Taken together, these data demonstrate that anchored RSK3 transduces signals that modulate pathologic myocyte growth. Targeting of signaling complexes that contain select kinase isoforms should provide an approach for the specific inhibition of cardiac myocyte hypertrophy and for the development of novel strategies for the prevention and treatment of heart failure.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiomegalia/enzimologia , Miócitos Cardíacos/enzimologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Recém-Nascidos , Sítios de Ligação , Células COS , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/prevenção & controle , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Genótipo , Células HEK293 , Humanos , Imunoprecipitação , Isoproterenol , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Fenótipo , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Proteínas Quinases S6 Ribossômicas 90-kDa/deficiência , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transdução de Sinais , Transdução Genética , Transfecção
4.
J Neurosci ; 33(50): 19470-9, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24336713

RESUMO

More than 80 human X-linked genes have been associated with mental retardation and deficits in learning and memory. However, most of the identified mutations induce limited morphological alterations in brain organization and the molecular bases underlying neuronal clinical features remain elusive. We show here that neurons cultured from mice lacking ribosomal S6 kinase 2 (Rsk2), a model for the Coffin-Lowry syndrome (CLS), exhibit a significant delay in growth in a similar way to that shown by neurons cultured from phospholipase D1 (Pld1) knock-out mice. We found that gene silencing of Pld1 or Rsk2 as well as acute pharmacological inhibition of PLD1 or RSK2 in PC12 cells strongly impaired neuronal growth factor (NGF)-induced neurite outgrowth. Expression of a phosphomimetic PLD1 mutant rescued the inhibition of neurite outgrowth in PC12 cells silenced for RSK2, revealing that PLD1 is a major target for RSK2 in neurite formation. NGF-triggered RSK2-dependent phosphorylation of PLD1 led to its activation and the synthesis of phosphatidic acid at sites of neurite growth. Additionally, total internal reflection fluorescence microscopy experiments revealed that RSK2 and PLD1 positively control fusion of tetanus neurotoxin insensitive vesicle-associated membrane protein (TiVAMP)/VAMP-7 vesicles at sites of neurite outgrowth. We propose that the loss of function mutations in RSK2 that leads to CLS and neuronal deficits are related to defects in neuronal growth due to impaired RSK2-dependent PLD1 activity resulting in a reduced vesicle fusion rate and membrane supply.


Assuntos
Neuritos/metabolismo , Ácidos Fosfatídicos/biossíntese , Fosfolipase D/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Células Cultivadas , Síndrome de Coffin-Lowry/genética , Síndrome de Coffin-Lowry/metabolismo , Camundongos , Camundongos Knockout , Fator de Crescimento Neural/farmacologia , Neuritos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , Fosforilação , Ratos , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
5.
Neurobiol Dis ; 58: 156-68, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23742761

RESUMO

The Coffin-Lowry syndrome (CLS) is a syndromic form of intellectual disability caused by loss-of-function of the RSK2 serine/threonine kinase encoded by the rsk2 gene. Rsk2 knockout mice, a murine model of CLS, exhibit spatial learning and memory impairments, yet the underlying neural mechanisms are unknown. In the current study, we examined the performance of Rsk2 knockout mice in cued, trace and contextual fear memory paradigms and identified selective deficits in the consolidation and reconsolidation of hippocampal-dependent fear memories as task difficulty and hippocampal demand increase. Electrophysiological, biochemical and electron microscopy analyses were carried out in the dentate gyrus of the hippocampus to explore potential alterations in neuronal functions and structure. In vivo and in vitro electrophysiology revealed impaired synaptic transmission, decreased network excitability and reduced AMPA and NMDA conductance in Rsk2 knockout mice. In the absence of RSK2, standard measures of short-term and long-term potentiation (LTP) were normal, however LTP-induced CREB phosphorylation and expression of the transcription factors EGR1/ZIF268 were reduced and that of the scaffolding protein SHANK3 was blocked, indicating impaired activity-dependent gene regulation. At the structural level, the density of perforated and non-perforated synapses and of multiple spine boutons was not altered, however, a clear enlargement of spine neck width and post-synaptic densities indicates altered synapse ultrastructure. These findings show that RSK2 loss-of-function is associated in the dentate gyrus with multi-level alterations that encompass modifications of glutamate receptor channel properties, synaptic transmission, plasticity-associated gene expression and spine morphology, providing novel insights into the mechanisms contributing to cognitive impairments in CLS.


Assuntos
Síndrome de Coffin-Lowry/complicações , Síndrome de Coffin-Lowry/genética , Giro Denteado/patologia , Medo , Transtornos da Memória/etiologia , Mutação/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transmissão Sináptica/genética , Animais , Condicionamento Psicológico/fisiologia , Sinais (Psicologia) , Giro Denteado/ultraestrutura , Modelos Animais de Doenças , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/genética , Reação de Congelamento Cataléptica/fisiologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , N-Metilaspartato/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
6.
Int J Mol Sci ; 14(2): 3358-75, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23389038

RESUMO

The RSK2 protein is a member of the RSK serine-threonine protein kinase family and is encoded by the X-linked rps6ka3 gene in human. Highly heterogeneous loss-of-function mutations affecting this gene are responsible for a severe syndromic form of cognitive impairment, Coffin-Lowry syndrome. RSK2, which is highly conserved in mammals, acts at the distal end of the Ras-ERK signaling pathway and is activated in response to growth factors and neurotransmitters. RSK2 is highly expressed in the hippocampus, and Rsk2-KO mice display spatial learning and memory impairment. We recently showed that ERK1/2 activity is abnormally increased in the hippocampus of Rsk2-KO mice as well as the expression of the AMPA receptor subunit GluR2. The mechanism via which RSK2 deficiency affects the expression of GluR2 in neural cells was unknown. To address this issue we constitutively suppressed the expression of RSK2 in PC12 cells via vector-based shRNA in the present study. We show that Rsk2 silencing leads also to an elevation of ERK1/2 phosphorylation as well as of GluR2 expression and that the increased level of GluR2 expression results from the increased ERK1/2 activity on the transcription factor Sp1. Our results provide evidence that RSK2 modulates ERK1/2 activity on Sp1, which regulates GluR2 expression through transcriptional activation.

7.
Learn Mem ; 18(9): 574-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21852432

RESUMO

RSK2 is a Ser/Thr kinase acting in the Ras/MAPK pathway. Rsk2 gene deficiency leads to the Coffin-Lowry Syndrome, notably characterized by cognitive deficits. We found that mrsk2 knockout mice are unable to associate an aversive stimulus with context in a lithium-induced conditioned place aversion task requiring both high-order cognition and emotional processing. Virally mediated shRNA-RSK2 knockdown in the habenula, whose involvement in cognition is receiving increasing attention, also ablated contextual conditioning. RSK2 signaling in the habenula, therefore, is essential for this task. Our study reveals a novel role for RSK2 in cognitive processes and uncovers the critical implication of an intriguing brain structure in place aversion learning.


Assuntos
Aprendizagem da Esquiva/fisiologia , Habenula/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Antimaníacos/farmacologia , Aprendizagem da Esquiva/efeitos da radiação , Células COS , Chlorocebus aethiops , Condicionamento Operante/efeitos dos fármacos , Habenula/efeitos dos fármacos , Cloreto de Lítio/farmacologia , Proteínas Luminescentes/genética , Camundongos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/deficiência , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transfecção/métodos
8.
J Neurochem ; 119(3): 447-59, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21838783

RESUMO

Coffin-Lowry syndrome is a syndromic form of mental retardation caused by mutations of the Rps6ka3 gene encoding ribosomal s6 kinase (RSK)2. RSK2 belongs to a family containing four members in mammals: RSK1-4. RSKs are serine/threonine kinases and cytosolic substrates of extracellular signal-regulated kinase (ERK) in the Ras/MAPK signaling pathway. RSK2 is highly expressed in the hippocampus, and mrsk2_KO mice display spatial learning and memory impairment. In the present study, we provide evidence of abnormally increased phosphorylation of ERK1/2 in the hippocampus of mrsk2_KO mice. Further studies based on cultured hippocampal neurons revealed that glutamate activates ERK1/2 and RSKs, and confirmed a stronger activation of ERK1/2 in mrsk2_KO neurons than in WT cells. We, thus, provide further evidence that RSK2 exerts a feedback inhibitory effect on the ERK1/2 pathway. We also observed a transient sequestration of P-ERK1/2 in the cytoplasm upon glutamate stimulation. In addition, the transcription factors cAMP response element binding and Ets LiKe gene1 show over-activation in RSK2-deficient neurons. Finally, c-Fos, Zif268 and Arc were significantly over-expressed in mrsk2_KO neurons upon glutamate stimulation. Importantly, the increased phosphorylation of other RSK family members observed in mutant neurons was unable to compensate for RSK2 deficiency. This aberrant ERK1/2 signaling can influence various neuronal functions, and thus play a significant role in cognitive dysfunction in mrsk2_KO mice and in the Coffin-Lowry syndrome.


Assuntos
Síndrome de Coffin-Lowry/genética , Modelos Animais de Doenças , Hipocampo/enzimologia , Sistema de Sinalização das MAP Quinases/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/deficiência , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Animais , Células Cultivadas , Síndrome de Coffin-Lowry/enzimologia , Transtornos Cognitivos/enzimologia , Transtornos Cognitivos/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Mutação , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/fisiologia
9.
Hum Genet ; 129(3): 255-69, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21116650

RESUMO

Coffin-Lowry syndrome (CLS) is a syndromic form of mental retardation caused by loss of function mutations in the X-linked RPS6KA3 gene, which encodes RSK2, a serine/threonine kinase acting in the MAPK/ERK pathway. The mouse invalidated for the Rps6ka3 (Rsk2-KO) gene displays learning and long-term spatial memory deficits. In the current study, we compared hippocampal gene expression profiles from Rsk2-KO and normal littermate mice to identify changes in molecular pathways. Differential expression was observed for 100 genes encoding proteins acting in various biological pathways, including cell growth and proliferation, cell death and higher brain function. The twofold up-regulated gene (Gria2) was of particular interest because it encodes the subunit GLUR2 of the AMPA glutamate receptor. AMPA receptors mediate most fast excitatory synaptic transmission in the central nervous system. We provide evidence that in the hippocampus of Rsk2-KO mice, expression of GLUR2 at the mRNA and at the protein levels is significantly increased, whereas basal AMPA receptor-mediated transmission in the hippocampus of Rsk2-KO mice is significantly decreased. This is the first time that such deregulations have been demonstrated in the mouse model of the Coffin-Lowry syndrome. Our findings suggest that a defect in AMPA neurotransmission and plasticity contribute to mental retardation in CLS patients.


Assuntos
Síndrome de Coffin-Lowry/genética , Hipocampo/enzimologia , Receptores de AMPA/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Animais , Síndrome de Coffin-Lowry/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de AMPA/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transmissão Sináptica/genética , Regulação para Cima
10.
Proc Natl Acad Sci U S A ; 105(24): 8434-9, 2008 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-18550821

RESUMO

Exocytosis of neurotransmitters and hormones occurs through the fusion of secretory vesicles with the plasma membrane. This highly regulated process involves key proteins, such as SNAREs, and specific lipids at the site of membrane fusion. Phospholipase D (PLD) has recently emerged as a promoter of membrane fusion in various exocytotic events potentially by providing fusogenic cone-shaped phosphatidic acid. We show here that PLD1 is regulated by ribosomal S6 kinase 2 (RSK2)-dependent phosphorylation. RSK2 is activated by a high K(+)-induced rise in cytosolic calcium. Expression of inactive RSK2 mutants or selective knockdown of endogenous RSK2 dramatically affects the different kinetic components of the exocytotic response in chromaffin cells. RSK2 physically interacts with and stimulates PLD activity through the phosphorylation of Thr-147 in the PLD1 amino-terminal phox homology domain. Expression of PLD1 phosphomimetic mutants fully restores secretion in cells depleted of RSK2, suggesting that RSK2 is a critical upstream signaling element in the activation of PLD1 to produce the lipids required for exocytosis. We propose that PLD-related defects in neuronal and endocrine activities could contribute to the effect observed after the loss-of-function mutations in Rsk2 that lead to Coffin-Lowry syndrome, an X-linked form of growth and mental retardation.


Assuntos
Cálcio/metabolismo , Células Cromafins/metabolismo , Síndrome de Coffin-Lowry/enzimologia , Exocitose , Fosfolipase D/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Células Cromafins/enzimologia , Síndrome de Coffin-Lowry/genética , Exocitose/genética , Células PC12 , Ácidos Fosfatídicos/metabolismo , Fosforilação , Ratos , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
11.
J Cell Biol ; 169(2): 227-31, 2005 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-15837801

RESUMO

Vertebrate oocytes arrest in metaphase of the second meiotic division (MII), where they maintain a high cdc2/cyclin B activity and a stable, bipolar spindle because of cytostatic factor (CSF) activity. The Mos-MAPK pathway is essential for establishing CSF. Indeed, oocytes from the mos-/- strain do not arrest in MII and activate without fertilization, as do Xenopus laevis oocytes injected with morpholino oligonucleotides directed against Mos. In Xenopus oocytes, p90Rsk (ribosomal S6 kinase), a MAPK substrate, is the main mediator of CSF activity. We show here that this is not the case in mouse oocytes. The injection of constitutively active mutant forms of Rsk1 and Rsk2 does not induce a cell cycle arrest in two-cell mouse embryos. Moreover, these two mutant forms do not restore MII arrest after their injection into mos-/- oocytes. Eventually, oocytes from the triple Rsk (1, 2, 3) knockout present a normal CSF arrest. We demonstrate that p90Rsk is not involved in the MII arrest of mouse oocytes.


Assuntos
Blastômeros/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Meiose/fisiologia , Oócitos/fisiologia , Proteínas Proto-Oncogênicas c-mos/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Feminino , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Gravidez , Proteínas Proto-Oncogênicas c-mos/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Xenopus laevis
12.
Mol Cell Neurosci ; 42(2): 134-41, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19555761

RESUMO

Mutations in Ribosomal s6 kinase 2 (Rsk2) are associated with severe neuronal dysfunction in Coffin-Lowry syndrome (CLS) patients, flies and mice. So far, the mechanisms of how Rsk2 regulates development, maintenance and activity of neurons are not understood. We have investigated the consequences of Rsk2 deficiency in mouse spinal motoneurons. Survival of isolated Rsk2 deficient motoneurons is not reduced, but these cells grow significantly longer neurites. Conversely, overexpression of a constitutively active form of Rsk2 leads to reduced axon growth. Increased axon growth in Rsk2 deficient neurons was accompanied by higher Erk 1/2 phosphorylation, and the knockout phenotype could be rescued by pharmacological inhibition of MAPK/Erk kinase (Mek). These data indicate that Rsk2 negatively regulates axon elongation via the MAPK pathway. Thus, the functional defects observed in the nervous system of CLS patients and animal models with Rsk2 deficiency might be caused by dysregulated neurite growth rather than primary neurodegeneration.


Assuntos
Axônios/fisiologia , Neurônios Motores , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Sobrevivência Celular , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Medula Espinal/citologia
13.
J Neurochem ; 107(5): 1325-34, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18823370

RESUMO

The Coffin-Lowry syndrome, a rare syndromic form of X-linked mental retardation, is caused by loss-of-function mutations in the hRSK2 (RPS6KA3) gene. To further investigate RSK2 (90-kDa ribosomal S6 kinase) implication in cognitive processes, a mrsk2_KO mouse has previously been generated as an animal model of Coffin-Lowry syndrome. The aim of the present study was to identify possible neurochemical dysregulation associated with the behavioral and morphological abnormalities exhibited by mrsk2_KO mice. A cortical dopamine level increase was found in mrsk2_KO mice that was accompanied by an over-expression of dopamine receptor of type 2 and the dopamine transporter. We also detected an increase of total and phosphorylated extracellular regulated kinase that may be responsible for the increased level of tyrosine hydroxylase phosphorylation also observed. By taking into consideration previously reported data, our results strongly suggest that the dopaminergic dysregulation in mrsk2_KO mice may be caused, at least in part, by tyrosine hydroxylase hyperactivity. This cortical hyperdopaminergia may explain some non-cognitive but also cognitive alterations exhibited by mrsk2_KO mice.


Assuntos
Síndrome de Coffin-Lowry/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/deficiência , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Cromatografia Líquida de Alta Pressão/métodos , Síndrome de Coffin-Lowry/patologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Dopamina beta-Hidroxilase/genética , Dopamina beta-Hidroxilase/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
14.
Am J Med Genet A ; 146A(10): 1267-79, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18412109

RESUMO

We have investigated the breakpoints of a balanced reciprocal translocation between chromosomes X and 5, [46,X,t(X;5)(p11.1;q31.1)], in a woman with mild mental retardation (MR). Methylation studies showed a 100% skewed X-inactivation in patient-derived lymphocytes. Cloning and sequencing of the junction fragment from the X derivative showed that the breakpoint occurred in intron 3 of the CDKL3 gene on chromosome 5 and in a region devoid of genes on chromosome X. Quantitative RT-PCR analyses on patient-derived lymphoblastoid cells documented a significant 50% decrease of the CDKL3 transcript level. Allelic expression analysis, using an intronic SNP that was RT-PCR amplified from CDKL3 pre-mRNA, provided further evidence that the CDKL3 gene was transcribed from only one allele. Decreased CDKL3 gene expression was definitively confirmed at the protein level by immunoblot analysis. CDKL3 is a member of a subset of the cdc2-related protein kinase family that shows similarity to both mitogen-activated protein kinases (MAPK) and cyclin-dependant kinases (cdks). Importantly, one member of the family, CDKL5, has been implicated in atypical Rett syndrome, West syndrome, and X-linked infantile spasm, all including MR as a manifestation. Expression studies demonstrated that the mouse homologue, mCdkl3, was expressed in all brain regions investigated and throughout mouse development, a pattern that is consistent with a role in development and brain function. Together the data suggest that haploinsufficiency of CDKL3 in the t(X;5) patient contributes to her phenotype, and that the CDKL3 gene is a strong candidate for nonsyndromal autosomal dominant MR.


Assuntos
Cromossomos Humanos Par 5/genética , Cromossomos Humanos X/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteínas Serina-Treonina Quinases/genética , Translocação Genética , Inativação do Cromossomo X , Animais , Linfócitos B , Linhagem Celular Transformada , Feminino , Humanos , Masculino , Camundongos
15.
Hum Genet ; 122(5): 541-3, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17717706

RESUMO

Heterogeneous mutations in the X-linked gene RPS6KA3, encoding the protein kinase RSK2, are responsible for Coffin-Lowry Syndrome. Here we have further studied a male patient with a highly suggestive clinical diagnosis of CLS but in whom no mutation was found by exon sequencing. Western blot analysis revealed a protein much larger than the normal expected size. Sequencing of the RSK2 cDNA, showed the presence of an in-frame tandem duplication of exons 17-20. The mutated RSK2 protein was found to be inactive in an in-vitro kinase assay. This event, which was the result of a homologous unequal recombination between Alu sequences, is the first reported large duplication of the RPS6KA3 gene. Our finding provides further evidence that immunoblot analysis, or a molecular assay capable to detect large genomic mutational events, is essential for patients with a highly suggestive CLS clinical diagnosis but remaining without mutation after exon sequencing.


Assuntos
Síndrome de Coffin-Lowry/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Síndrome de Coffin-Lowry/enzimologia , DNA/genética , Éxons , Duplicação Gênica , Humanos , Masculino , RNA Mensageiro/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/química , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sequências de Repetição em Tandem
16.
Eur J Hum Genet ; 14(1): 55-62, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16267500

RESUMO

Hypomagnesemia with secondary hypocalcemia (HSH) is a rare inherited disease, characterised by neurological symptoms, such as tetany, muscle spasms and seizures, due to hypocalcemia. It has been suggested that HSH is genetically heterogeneous, but only one causative gene, TRPM6, on chromosome 9 has so far been isolated. We have now studied the genetic background of HSH in four Polish patients belonging to three families, and a HSH patient carrying an apparently balanced X;9 translocation. The translocation patient has long been considered as an example of the X-linked form of HSH. We identified six TRPM6 gene mutations, of which five were novel, in the Polish patients. All the alterations were either nonsense/splicing or missense mutations. The clinical picture of the patients was similar to the HSH patients reported earlier. No genotype-phenotype correlation could be detected. Sequencing did not reveal any TRPM6 or TRPM7 gene mutations in the female HSH patient with an X;9 translocation. Isolation of the translocation breakpoint showed that the chromosome 9 specific breakpoint mapped within satellite III repeat sequence. The X-chromosomal breakpoint was localised to the first intron of the vascular endothelial growth factor gene, VEGFD. No other sequence alterations were observed within the VEGFD gene. Even though the VEGFD gene was interrupted by the X;9 translocation, it seems unlikely that VEGFD is causing the translocation patient's HSH-like phenotype. Furthermore, re-evaluation of patient's clinical symptoms suggests that she did not have a typical HSH.


Assuntos
Cromossomos Humanos Par 9 , Cromossomos Humanos X , Hipocalcemia/genética , Canais de Cátion TRPM/genética , Sequência de Aminoácidos , Sequência de Bases , Feminino , Humanos , Hipocalcemia/etiologia , Lactente , Recém-Nascido , Íntrons , Deficiência de Magnésio/genética , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Polônia , Proteínas Serina-Treonina Quinases , Translocação Genética , Fator D de Crescimento do Endotélio Vascular/genética
17.
Nucleic Acids Res ; 32(3): 1214-23, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14973203

RESUMO

Coffin-Lowry syndrome (CLS) is caused by mutations in the RSK2 gene encoding a protein kinase of the Ras signalling pathway. We have studied two point mutations which cause aberrant splicing but do not concern the invariant GT or AG nucleotides of splice sites. The first, an A-->G transition at position +3 of the 5' splice site of exon 6, results in vivo and in vitro in exon skipping and premature translation termination. The natural 5' splice site, although intrinsically weak, is not transactivated under normal conditions. Consequently, replacement of an A/U by a G/U base pairing with U1 snRNA reduces its strength below a critical threshold. The second mutation, an A-->G transition 11 nt upstream of exon 5, creates a new AG near the natural 3' splice site. In vitro this synthetic 3' AG is used exclusively by the splicing machinery. In vivo this splicing event is also observed, but is underestimated because the resulting RSK2 mRNA contains premature stop codons which trigger the nonsense-mediated decay process. We show that a particular mechanism is involved in the aberrant splicing of exon 5, implying involvement of the natural 3' AG during the first catalytic step and the new 3' AG during the second step. Thus, our results explain how these mutations cause severe forms of CLS.


Assuntos
Síndrome de Coffin-Lowry/genética , Íntrons , Mutação Puntual , Splicing de RNA , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Sequência de Bases , Linhagem Celular , Síndrome de Coffin-Lowry/enzimologia , Células HeLa , Humanos , Sítios de Splice de RNA , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
18.
Mol Cell Biol ; 35(1): 132-40, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25332232

RESUMO

Rsk kinases play important roles in several cellular processes such as proliferation, metabolism, and migration. Until recently, Rsk activation was thought to be exclusively initiated by Erk1/2, but in dendritic cells (DC) Rsk is also activated by p38 mitogen-activated protein (MAP) kinase via its downstream substrates, MK2/3. How and why this noncanonical configuration of the MAP kinase pathway is adopted by these key immune cells are not known. We demonstrate that the Erk1/2-activated C-terminal kinase domain of Rsk is dispensable for p38-MK2/3 activation and show that compared with fibroblasts, a greater fraction of p38 and MK2/3 is located in the cytosol of DC prior to stimulation, suggesting a partial explanation for the operation of the noncanonical pathway of Rsk activation in these cells. p38/MK2/3-activated Rsk phosphorylated downstream targets and is physiologically important because in plasmacytoid DC (pDC) stimulated with Toll-like receptor 7 (TLR7) agonists, Erk1/2 activation is very weak relative to p38. As a result, Rsk activation is entirely p38 dependent. We show that this unusual configuration of MAP kinase signaling contributes substantially to production of type I interferons, a hallmark of pDC activation.


Assuntos
Células Dendríticas/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Receptores Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Proliferação de Células , Citocinas/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais
19.
Sci Rep ; 5: 14778, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26437780

RESUMO

The brain-derived neurotrophic factor BDNF plays a critical role in neuronal development and the induction of L-LTP at glutamatergic synapses in several brain regions. However, the cellular and molecular mechanisms underlying these BDNF effects have not been firmly established. Using in vitro cultures of cortical neurons from knockout mice for Pld1 and Rsk2, BDNF was observed to induce a rapid RSK2-dependent activation of PLD and to stimulate BDNF ERK1/2-CREB and mTor-S6K signalling pathways, but these effects were greatly reduced in Pld1(-/-) neurons. Furthermore, phospho-CREB did not accumulate in the nucleus, whereas overexpression of PLD1 amplified the BDNF-dependent nuclear recruitment of phospho-ERK1/2 and phospho-CREB. This BDNF retrograde signalling was prevented in cells silenced for the scaffolding protein PEA15, a protein which complexes with PLD1, ERK1/2, and RSK2 after BDNF treatment. Finally PLD1, ERK1/2, and RSK2 partially colocalized on endosomal structures, suggesting that these proteins are part of the molecular module responsible for BDNF signalling in cortical neurons.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Fosfolipase D/genética , Transdução de Sinais , Animais , Proteínas Reguladoras de Apoptose , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Endossomos/metabolismo , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fosfolipase D/deficiência , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Cultura Primária de Células , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/deficiência , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
20.
Eur J Hum Genet ; 10(1): 2-5, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11896450

RESUMO

The Coffin-Lowry syndrome (CLS) is a syndromic form of X-linked mental retardation characterised in male patients by psychomotor and growth retardation, and various skeletal anomalies. CLS is caused by mutations in a gene located in Xp22.2 and encoding RSK2, a growth-factor regulated protein kinase. Mutations are extremely heterogeneous and lead to premature termination of translation and/or to loss of phosphotransferase activity. No correlation between the type and location of mutation and the clinical phenotype is evident. However, in one family (MRX19), a missense mutation was associated solely with mild mental retardation and no other clinical feature. Screening for RSK2 mutations is essential in most cases to confirm the diagnosis as well as for genetic counseling.


Assuntos
Anormalidades Múltiplas/genética , Mutação , Proteínas Quinases S6 Ribossômicas/genética , Cromossomo X , Anormalidades Múltiplas/enzimologia , Animais , Modelos Animais de Doenças , Humanos , Deficiência Intelectual/enzimologia , Deficiência Intelectual/genética , Masculino , Camundongos , Camundongos Knockout , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA