Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
BMC Public Health ; 17(1): 179, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28178973

RESUMO

BACKGROUND: Although preventable, tetanus still claims tens of thousands of deaths each year. The patterns and distribution of mortality from tetanus have not been well characterized. We identified the global, regional, and national levels and trends of mortality from neonatal and non-neonatal tetanus based on the results from the Global Burden of Disease Study 2015. METHODS: Data from vital registration, verbal autopsy studies and mortality surveillance data covering 12,534 site-years from 1980 to 2014 were used. Mortality from tetanus was estimated using the Cause of Death Ensemble modeling strategy. RESULTS: There were 56,743 (95% uncertainty interval (UI): 48,199 to 80,042) deaths due to tetanus in 2015; 19,937 (UI: 17,021 to 23,467) deaths occurred in neonates; and 36,806 (UI: 29,452 to 61,481) deaths occurred in older children and adults. Of the 19,937 neonatal tetanus deaths, 45% of deaths occurred in South Asia, and 44% in Sub-Saharan Africa. Of the 36,806 deaths after the neonatal period, 47% of deaths occurred in South Asia, 36% in sub-Saharan Africa, and 12% in Southeast Asia. Between 1990 and 2015, the global mortality rate due to neonatal tetanus dropped by 90% and that due to non-neonatal tetanus dropped by 81%. However, tetanus mortality rates were still high in a number of countries in 2015. The highest rates of neonatal tetanus mortality (more than 1,000 deaths per 100,000 population) were observed in Somalia, South Sudan, Afghanistan, and Kenya. The highest rates of mortality from tetanus after the neonatal period (more than 5 deaths per 100,000 population) were observed in Somalia, South Sudan, and Kenya. CONCLUSIONS: Though there have been tremendous strides globally in reducing the burden of tetanus, tens of thousands of unnecessary deaths from tetanus could be prevented each year by an already available inexpensive and effective vaccine. Availability of more high quality data could help narrow the uncertainty of tetanus mortality estimates.


Assuntos
Carga Global da Doença/estatística & dados numéricos , Internacionalidade , Tétano/mortalidade , Adolescente , Adulto , África/epidemiologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Ásia/epidemiologia , Australásia/epidemiologia , Região do Caribe/epidemiologia , Criança , Pré-Escolar , Europa (Continente)/epidemiologia , Feminino , Humanos , Lactente , Recém-Nascido , América Latina/epidemiologia , Masculino , Pessoa de Meia-Idade , Oriente Médio/epidemiologia , América do Norte/epidemiologia , Oceania/epidemiologia , Adulto Jovem
2.
JAMA Oncol ; 3(4): 524-548, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27918777

RESUMO

IMPORTANCE: Cancer is the second leading cause of death worldwide. Current estimates on the burden of cancer are needed for cancer control planning. OBJECTIVE: To estimate mortality, incidence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs) for 32 cancers in 195 countries and territories from 1990 to 2015. EVIDENCE REVIEW: Cancer mortality was estimated using vital registration system data, cancer registry incidence data (transformed to mortality estimates using separately estimated mortality to incidence [MI] ratios), and verbal autopsy data. Cancer incidence was calculated by dividing mortality estimates through the modeled MI ratios. To calculate cancer prevalence, MI ratios were used to model survival. To calculate YLDs, prevalence estimates were multiplied by disability weights. The YLLs were estimated by multiplying age-specific cancer deaths by the reference life expectancy. DALYs were estimated as the sum of YLDs and YLLs. A sociodemographic index (SDI) was created for each location based on income per capita, educational attainment, and fertility. Countries were categorized by SDI quintiles to summarize results. FINDINGS: In 2015, there were 17.5 million cancer cases worldwide and 8.7 million deaths. Between 2005 and 2015, cancer cases increased by 33%, with population aging contributing 16%, population growth 13%, and changes in age-specific rates contributing 4%. For men, the most common cancer globally was prostate cancer (1.6 million cases). Tracheal, bronchus, and lung cancer was the leading cause of cancer deaths and DALYs in men (1.2 million deaths and 25.9 million DALYs). For women, the most common cancer was breast cancer (2.4 million cases). Breast cancer was also the leading cause of cancer deaths and DALYs for women (523 000 deaths and 15.1 million DALYs). Overall, cancer caused 208.3 million DALYs worldwide in 2015 for both sexes combined. Between 2005 and 2015, age-standardized incidence rates for all cancers combined increased in 174 of 195 countries or territories. Age-standardized death rates (ASDRs) for all cancers combined decreased within that timeframe in 140 of 195 countries or territories. Countries with an increase in the ASDR due to all cancers were largely located on the African continent. Of all cancers, deaths between 2005 and 2015 decreased significantly for Hodgkin lymphoma (-6.1% [95% uncertainty interval (UI), -10.6% to -1.3%]). The number of deaths also decreased for esophageal cancer, stomach cancer, and chronic myeloid leukemia, although these results were not statistically significant. CONCLUSION AND RELEVANCE: As part of the epidemiological transition, cancer incidence is expected to increase in the future, further straining limited health care resources. Appropriate allocation of resources for cancer prevention, early diagnosis, and curative and palliative care requires detailed knowledge of the local burden of cancer. The GBD 2015 study results demonstrate that progress is possible in the war against cancer. However, the major findings also highlight an unmet need for cancer prevention efforts, including tobacco control, vaccination, and the promotion of physical activity and a healthy diet.


Assuntos
Carga Global da Doença/tendências , Neoplasias/epidemiologia , Distribuição por Idade , Feminino , Humanos , Incidência , Masculino , Distribuição por Sexo , Fatores de Tempo
3.
JAMA Oncol ; 3(12): 1683-1691, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28983565
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA