Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nano Lett ; 22(24): 10184-10191, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36475747

RESUMO

Two-dimensional metal dichalcogenides have demonstrated outstanding potential as cathodes for magnesium-ion batteries. However, the limited capacity, poor cycling stability, and severe electrode pulverization, resulting from lack of void space for expansion, impede their further development. In this work, we report for the first time, nickel sulfide (NiS2) hollow nanospheres assembled with nanoparticles for use as cathode materials in magnesium-ion batteries. Notably, the nanospheres were prepared by a one-step solvothermal process in the absence of an additive. The results show that regulating the synergistic effect between the rich anions and hollow structure positively affects its electrochemical performance. Crystallographic and microstructural characterizations reveal the reversible anionic redox of S2-/(S2)2-, consistent with density functional theory results. Consequently, the optimized cathode (8-NiS2 hollow nanospheres) could deliver a large capacity of 301 mA h g-1 after 100 cycles at 50 mA g-1, supporting the promising practical application of NiS2 hollow nanospheres in magnesium-ion batteries.

2.
Nano Lett ; 21(24): 10538-10546, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34889614

RESUMO

A major challenge hindering the practical adoption of room-temperature sodium-sulfur batteries (NaSBs) is polysulfide dissolution and shuttling, which results in irreversible capacity decay and low Coulombic efficiencies. In this work, we demonstrate for the first time NaSBs using a ferrocene-derived amorphous sulfurized cyclopentadienyl composite (SCC) cathode. Polysulfide dissolution is eliminated via covalent bonding between the insoluble short-chain sulfur species and carbon backbone. Control experiments with a metal-free composite analogue determined that the iron species in the SCC does not have a significant role in polysulfide anchoring. Instead, the superior electrochemical performance is attributed to sulfur covalently bonded to carbon and the uniform nanoparticulate morphology of the SCC composite. In the carbonate-based electrolyte, a discharge capacity of 795 mAh g(S)-1 was achieved during early cycling at 0.2 C, and high Coulombic efficiencies close to 100% were maintained with capacity retention of 532 and 442 mAh g(S)-1 after 100 and 200 cycles, respectively.

3.
Angew Chem Int Ed Engl ; 60(19): 10784-10790, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33527641

RESUMO

The electrochemical CO and CO2 reduction reactions (CORR and CO2 RR) using copper catalysts and renewable electricity hold promise as a carbon-neutral route to produce commodity chemicals and fuels. However, the exact mechanisms and structure sensitivity of Cu electrodes toward C2 products are still under debate. Herein, we investigate ethylene oxide reduction (EOR) as a proxy to the late stages of CORR to ethylene, and the results are compared to those of acetaldehyde reduction to ethanol. Density functional theory (DFT) calculations show that ethylene oxide undergoes ring opening before exclusively reducing to ethylene via *OH formation. Based on generalized coordination numbers (CN), a selectivity map for the late stages of CORR and CO2 RR shows that sites with moderate coordination (5.9 < CN < 7.5) are efficient for ethylene production, with pristine Cu(100) being more active than defective surfaces such as Cu(311). In contrast, kinks and edges are more active for ethanol production, while (111) terraces are relatively inert.

4.
Nat Mater ; 18(10): 1098-1104, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31332336

RESUMO

The semiconductor-electrolyte interface dominates the behaviours of semiconductor electrocatalysis, which has been modelled as a Schottky-analogue junction according to classical electron transfer theories. However, this model cannot be used to explain the extremely high carrier accumulations in ultrathin semiconductor catalysis observed in our work. Inspired by the recently developed ion-controlled electronics, we revisit the semiconductor-electrolyte interface and unravel a universal self-gating phenomenon through microcell-based in situ electronic/electrochemical measurements to clarify the electronic-conduction modulation of semiconductors during the electrocatalytic reaction. We then demonstrate that the type of semiconductor catalyst strongly correlates with their electrocatalysis; that is, n-type semiconductor catalysts favour cathodic reactions such as the hydrogen evolution reaction, p-type ones prefer anodic reactions such as the oxygen evolution reaction and bipolar ones tend to perform both anodic and cathodic reactions. Our study provides new insight into the electronic origin of the semiconductor-electrolyte interface during electrocatalysis, paving the way for designing high-performance semiconductor catalysts.

5.
Phys Chem Chem Phys ; 16(13): 5922-6, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24566893

RESUMO

We employ transient absorption spectroscopy to record the absorption spectrum of photogenerated charge carriers in Cu2O. We have found that CO2 reduction in Cu2O is limited by fast electron-hole recombination. The deposition of RuOx nanoparticles on Cu2O results in a twofold increased yield of long-lived electrons, indicating partially reduced electron-hole recombination losses. This observation correlates with an approximately sixfold increase in the yield of CO2 reduction to CO.

6.
Mater Horiz ; 10(11): 5022-5031, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37644912

RESUMO

Green hydrogen produced via electrochemical water splitting is a suitable candidate to replace emission-intensive fuels. However, the successful widespread adoption of green hydrogen is contingent on the development of low-cost, earth-abundant catalysts. Herein, machine learning models built on experimental data were used to optimize the precursor ratios of hydroxide-based electrocatalysts, with the objective of improving the product's electrocatalytic performance for overall water splitting. The Neural Network-based models were found to be the most effective in predicting and minimizing the overpotentials of the catalysts, reaching a minimum in two iterations. The relatively mild reaction conditions of the synthesis procedure, coupled with its scalability demonstrated herein, renders the optimized catalyst relevant for industrial implementation in the future. The optimized catalyst, characterized to be a molybdate-intercalated CoFe LDH, demonstrated overpotentials of 266 and 272 mV at 10 mA cm-2 for oxygen and hydrogen evolution reactions respectively in alkaline electrolyte, alongside unwavering stability for overall water splitting over 50 h. Overall, our results reflect the efficacy and advantages of machine learning strategies to alleviate the time and labour-intensive nature of experimental optimizations, which can greatly accelerate electrocatalysts research.

7.
Nat Commun ; 14(1): 335, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670095

RESUMO

Intensive research in electrochemical CO2 reduction reaction has resulted in the discovery of numerous high-performance catalysts selective to multi-carbon products, with most of these catalysts still being purely transition metal based. Herein, we present high and stable multi-carbon products selectivity of up to 76.6% across a wide potential range of 1 V on histidine-functionalised Cu. In-situ Raman and density functional theory calculations revealed alternative reaction pathways that involve direct interactions between adsorbed histidine and CO2 reduction intermediates at more cathodic potentials. Strikingly, we found that the yield of multi-carbon products is closely correlated to the surface charge on the catalyst surface, quantified by a pulsed voltammetry-based technique which proved reliable even at very cathodic potentials. We ascribe the surface charge to the population density of adsorbed species on the catalyst surface, which may be exploited as a powerful tool to explain CO2 reduction activity and as a proxy for future catalyst discovery, including organic-inorganic hybrids.


Assuntos
Dióxido de Carbono , Procedimentos de Cirurgia Plástica , Histidina , Carbono , Eletrodos
8.
iScience ; 23(6): 101181, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32502967

RESUMO

Electrocatalytic CO2 reduction reaction (CO2RR) is an attractive way to produce renewable fuel and chemical feedstock, especially when coupled with efficient CO2 capture and clean energy sources. On the fundamental side, research on improving CO2RR activity still revolves around late transition metal-based catalysts, which are limited by unfavorable scaling relations despite intense investigation. Here, we report a combined experimental and theoretical investigation into electrocatalytic CO2RR on Ti- and Mo-based MXene catalysts. Formic acid is found as the main product on Ti2CTx and Mo2CTx MXenes, with peak Faradaic efficiency of over 56% on Ti2CTx and partial current density of up to -2.5 mA cm-2 on Mo2CTx. Furthermore, simulations reveal the critical role of the Tx group: a smaller overpotential is found to occur at lower amounts of -F termination. This work represents an important step toward experimental demonstration of MXenes for more complex electrocatalytic reactions in the future.

9.
ChemSusChem ; 13(21): 5690-5698, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-32815277

RESUMO

Electrochemical carbon dioxide reduction reaction (CO2 RR) represents a promising way to generate fuels and chemical feedstock sustainably. Recently, studies have shown that two-dimensional metal carbides and nitrides (MXenes) can be promising CO2 RR electrocatalysts due to the alternating -C and -H coordination with intermediates that decouples scaling relations seen on transition metal catalysts. However, further by tuning the electronic and surface structure of MXenes it should still be possible to reach higher turnover number and selectivities. To this end, defect engineering of MXenes for electrochemical CO2 RR has not been investigated to date. In this work, first-principles modelling simulations are employed to systematically investigate CO2 RR on M2 XO2 -type MXenes with transition metal and carbon/nitrogen vacancies. We found that the -C-coordinated intermediates take the form of fragments (e. g., *COOH, *CHO) whereas the -H-coordinated intermediates form a complete molecule (e. g., *HCOOH, *H2 CO). Interestingly, the fragment-type intermediates become more strongly bound when transition-metal vacancies are present on most MXenes, while the molecule-type intermediates are largely unaffected, allowing the CO2 RR overpotential to be tuned. The most promising defective MXene is Hf2 NO2 containing Hf vacancies, with a low overpotential of 0.45 V. More importantly, through electronic structure analysis it could be observed that the Fermi level of the MXene changes significantly in the presence of vacancies, indicating that the Fermi level shift can be used as an ideal descriptor to rapidly predict the catalytic performance of defective MXenes. Such an evaluation strategy is applicable to other catalysts beyond MXenes, which could enhance high throughput screening efforts for accelerated catalyst discovery.

10.
ACS Nano ; 14(9): 10834-10864, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32790329

RESUMO

Electro-, photo-, and photoelectrocatalysis play a critical role toward the realization of a sustainable energy economy. They facilitate numerous redox reactions in energy storage and conversion systems, enabling the production of chemical feedstock and clean fuels from abundant resources like water, carbon dioxide, and nitrogen. One major obstacle for their large-scale implementation is the scarcity of cost-effective, durable, and efficient catalysts. A family of two-dimensional transition metal carbides, nitrides, and carbonitrides (MXenes) has recently emerged as promising earth-abundant candidates for large-area catalytic energy storage and conversion due to their unique properties of hydrophilicity, high metallic conductivity, and ease of production by solution processing. To take full advantage of these desirable properties, MXenes have been combined with other materials to form MXene hybrids with significantly enhanced catalytic performances beyond the sum of their individual components. MXene hybridization tunes the electronic structure toward optimal binding of redox active species to improve intrinsic activity while increasing the density and accessibility of active sites. This review outlines recent strategies in the design of MXene hybrids for industrially relevant electrocatalytic, photocatalytic, and photoelectrocatalytic applications such as water splitting, metal-air/sulfur batteries, carbon dioxide reduction, and nitrogen reduction. By clarifying the roles of individual material components in the MXene hybrids, we provide design strategies to synergistically couple MXenes with associated materials for highly efficient and durable catalytic applications. We conclude by highlighting key gaps in the current understanding of MXene hybrids to guide future MXene hybrid designs in catalytic energy storage and conversion applications.

11.
ACS Nano ; 14(11): 16140-16155, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33186028

RESUMO

The development of highly efficient and durable earth-abundant hydrogen evolution reaction (HER) catalysts is crucial for the extensive implementation of the hydrogen economy. Members of the 2D MXenes family, particularly Mo2CTx, have recently been identified as promising HER catalysts. However, their inherent oxidative instability in air and aqueous electrolyte solutions is hindering their widespread use. Herein, we present a simple and scalable method to circumvent adventitious oxidation in Mo2CTx MXenes via in situ sulfidation to form a Mo2CTx/2H-MoS2 nanohybrid. The intimate epitaxial coupling at the Mo2CTx/2H-MoS2 nanohybrid interface afforded superior HER activities, requiring only 119 or 182 mV overpotential to yield -10 or -100 mA cm-2geom current densities, respectively. Density functional theory calculations reveal strongest interfacial adhesion was found within the nanohybrid structure as compared to the physisorbed nanohybrid, and the possibility to tune the HER overpotential through manipulating the extent of MXene sulfidation. Critically, the presence of 2H-MoS2 suppresses further oxidation of the MXene layer, enabling the nanohybrid to sustain industrially relevant current densities of over -450 mA cm-2geom with exceptional durability. Less than 30 mV overpotential degradation was observed after 10 continuous days of electrolysis at a fixed -10 mA cm-2geom current density or 100,000 successive cyclic voltammetry cycles. The exceptional HER durability of the Mo2CTx/2H-MoS2 nanohybrid presents a major step forward to realize practical implementation of MXenes as noble metal free catalysts for broad-based applications in water splitting and energy conversion.

12.
ACS Appl Mater Interfaces ; 11(40): 36571-36579, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31532180

RESUMO

Electrocatalysis represents a promising method to generate renewable fuels and chemical feedstock from the carbon dioxide reduction reaction (CO2RR). However, traditional electrocatalysts based on transition metals are not efficient enough because of the high overpotential and slow turnover. MXenes, a family of two-dimensional metal carbides and nitrides, have been predicted to be effective in catalyzing CO2RR, but a systematic investigation into their catalytic performance is lacking, especially on hydroxyl (-OH)-terminated MXenes relevant in aqueous reaction conditions. In this work, we utilized first-principles simulations to systematically screen and explore the properties of MXenes in catalyzing CO2RR to CH4 from both aspects of thermodynamics and kinetics. Sc2C(OH)2 was found to be the most promising catalyst with the least negative limiting potential of -0.53 V vs RHE. This was achieved through an alternative reaction pathway, where the adsorbed species are stabilized by capturing H atoms from the MXene's OH termination group. New scaling relations, based on the shared H interaction between intermediates and MXenes, were established. Bader charge analyses reveal that catalysts with less electron migration in the *(H)COOH → *CO elementary step exhibit better CO2RR performance. This study provides new insights regarding the effect of surface functionalization on the catalytic performance of MXenes to guide future materials design.

13.
ChemSusChem ; 11(1): 320-326, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28881436

RESUMO

The selective electroreduction of CO2 to formate (or formic acid) is of great interest in the field of renewable-energy utilization. In this work, we designed a sulfur-doped Cu2 O-derived Cu catalyst and showed that the presence of sulfur can tune the selectivity of Cu significantly from the production of various CO2 reduction products to almost exclusively formate. Sulfur is doped into the Cu catalysts by dipping the Cu substrates into ammonium polysulfide solutions. Catalyst films with the highest sulfur content of 2.7 at % showed the largest formate current density (jHCOO- ) of -13.9 mA cm-2 at -0.9 V versus the reversible hydrogen electrode (RHE), which is approximately 46 times larger than that previously reported for Cu(110) surfaces. At -0.8 V versus RHE, the faradaic efficiency of formate was maintained at approximately 75 % for 12 h of continuous electrolysis. Through the analysis of the evolution of the jHCOO- and jH2 values with the sulfur content, we show that sulfur doping increases formate production and suppresses the hydrogen evolution reaction. Ag-S and Cu-Se catalysts did not exhibit any significant enhancement towards the reduction of CO2 to formate. This demonstrates clearly that sulfur and copper acted synergistically to promote the selective formation of formate. A hypothesis about the role of sulfur is proposed and discussed.


Assuntos
Dióxido de Carbono/química , Cobre/química , Técnicas Eletroquímicas/métodos , Formiatos/química , Enxofre/química , Catálise , Eletrodos , Microscopia Eletrônica de Varredura , Oxirredução
14.
ACS Appl Mater Interfaces ; 10(34): 28572-28581, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30125083

RESUMO

The efficient electroreduction of CO2 has received significant attention as it is one of the crucial means to develop a closed-loop anthropogenic carbon cycle. Here, we describe the mechanistic workings of an electrochemically deposited CuS x catalyst that can reduce CO2 to formate with a Faradaic efficiency (FEHCOO-) of 75% and geometric current density ( jHCOO-) of -9.0 mA/cm2 at -0.9 V versus the reversible hydrogen electrode. At this potential, the formation of other CO2 reduction products such as hydrocarbons and CO was notably suppressed (total FE < 4%). The formate intermediate (HCOO*) was identified by operando Raman spectroscopy with isotopic labeling. A combination of electrochemical and materials characterization techniques revealed that the high selectivity toward formate production can be attributed to the effect of S dopants on the Cu catalyst, rather than surface morphology. Density functional theory calculations showed that the presence of sulfur weakens the HCOO* and *COOH adsorption energies, such that the formation of *COOH toward CO is suppressed, while the formation of HCOO* toward formate is favored.

16.
Nanoscale ; 6(16): 9767-73, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25007379

RESUMO

CO2 photoreduction over KTaO3 photocatalysts in water has been investigated. Both reduction (mainly carbon monoxide and hydrogen) and oxidation products (oxygen) were simultaneously detected in the absence of cocatalysts, sacrificial reagents and electrical bias. KTaO3 (KTO) samples were synthesized by solid-state reaction (SSR-KTO) and solvothermal methods in a hexane-water mixture (Hex-KTO) and pure ethanol (Eth-KTO). The different synthesis methods were used to control particle sizes and morphologies of KTaO3 and their correlation towards photocatalytic activity has been further investigated. Strikingly, KTO prepared in a hexane-water mixture solvent represents a nanoflake-like structure, resulting in a seven fold increase in CO2 reduction and hydrogen evolution activities in comparison to conventional cubic structure KTO under UV light irradiation. CO with trace amounts of CH4 is produced from CO2 photoreduction. Upon addition of a silver cocatalyst on KTO, the reduction selectivity has been controlled to favour CO2 photoreduction, and the CO2 to CO yield has been doubled compared to bare KTaO3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA