Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39029957

RESUMO

Advanced-stage endometrial cancer patients typically receive a combination of platinum and paclitaxel chemotherapy. However, limited treatment options are available for those with recurrent disease, and there is a need to identify alternative treatment options for the advanced setting. Our goal was to evaluate the pre-clinical efficacy and mechanism of action of Oklahoma Nitrone 007 (OKN-007) alone and in combination with carboplatin and paclitaxel in endometrial cancer. The effect of OKN-007 on the metabolic viability of endometrial cancer cells in both two- and three-dimensional (2D and 3D) cultures, as well as on clonogenic growth, in vitro was assessed. We also evaluated OKN-007 in vivo using an intraperitoneal xenograft model and targeted gene expression profiling to determine the molecular mechanism and gene expression programs altered by OKN-007. Our results showed that endometrial cancer cells were generally sensitive to OKN-007 in both 2D and 3D cultures. OKN-007 displayed a reduction in 3D spheroid and clonogenic growth. Subsequent targeted gene expression profiling revealed that OKN-007 significantly downregulated the immunosuppressive and immunometabolic enzyme indolamine 2,3-dioxygenase 1 (IDO1) (-11.27-fold change) and modulated upstream inflammatory pathways that regulate IDO1 expression (interferon- (IFN-), Jak-STAT, TGF-ß, and NF-kB), downstream IDO1 effector pathways (mTOR and aryl hydrocarbon receptor (AhR)) and altered T-cell co-signaling pathways. OKN-007 treatment reduced IDO1, SULF2, and TGF-ß protein expression in vivo, and inhibited TGF-ß, NF-kB, and AhR- receptor-mediated nuclear signaling in vitro. These findings indicate that OKN-007 surmounts pro-inflammatory, immunosuppressive, and pro-tumorigenic pathways and is a promising approach for the effective treat endometrial cancer. Significance Statement Women with advanced and recurrent endometrial cancer have limited therapeutic options. OKN-007, which has minimal toxicity and is currently being evaluated in early-phase clinical trials for the treatment of cancer, is a potential new strategy for the treatment of endometrial cancer.

2.
J Virol ; 97(11): e0119423, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37861336

RESUMO

IMPORTANCE: Severe COVID-19 and post-acute sequelae often afflict patients with underlying co-morbidities. There is a pressing need for highly effective treatment, particularly in light of the emergence of SARS-CoV-2 variants. In a previous study, we demonstrated that DCLK1, a protein associated with cancer stem cells, is highly expressed in the lungs of COVID-19 patients and enhances viral production and hyperinflammatory responses. In this study, we report the pivotal role of DCLK1-regulated mechanisms in driving SARS-CoV-2 replication-transcription processes and pathogenic signaling. Notably, pharmacological inhibition of DCLK1 kinase during SARS-CoV-2 effectively impedes these processes and counteracts virus-induced alternations in global cell signaling. These findings hold significant potential for immediate application in treating COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Quinases Semelhantes a Duplacortina , Humanos , Quinases Semelhantes a Duplacortina/antagonistas & inibidores , Quinases Semelhantes a Duplacortina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais , Replicação Viral/efeitos dos fármacos
3.
Am J Pathol ; 191(8): 1330-1341, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33895121

RESUMO

Exploration of extracellular communication has been at the forefront of research efforts in recent years. However, the mechanisms of cell-to-cell communication in complex tissues are poorly understood. What is clear is that cells do not exist in isolation, that they are constantly interacting and communicating with cells in the immediate vicinity and with cells at a distance. Intercellular communication by the release of small extracellular vesicles, called exosomes, loaded with RNAs is one mechanism by which cells communicate. In recent years, research has shown that exosomes, a class of extracellular vesicles, can play a major role in the pathogenesis of breast cancer. Specifically, exosomes have been demonstrated to play a role in promoting primary cancer development, invasion, metastasis, and chemotherapeutic resistance. This review summarizes what is known about the mechanisms of exosome-mediated transfer of RNAs among cells in the breast microenvironment and discusses outstanding questions and the potential for new therapeutic intervention targeted at these interactions.


Assuntos
Neoplasias da Mama/metabolismo , Comunicação Celular/fisiologia , Exossomos/metabolismo , RNA/metabolismo , Microambiente Tumoral/fisiologia , Neoplasias da Mama/patologia , Feminino , Humanos
4.
Am J Pathol ; 189(5): 966-974, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30273605

RESUMO

miRNAs are small RNAs that influence gene expression by targeting mRNAs. Depending on the function of their target genes, miRNAs may regulate the expression of oncogenes and tumor suppressors, thereby contributing to the promotion or inhibition of tumor progression. Ductal carcinoma in situ (DCIS), although often diagnosed as breast cancer, is a potential precursor to invasive ductal carcinoma. Many of the genetic events required for the invasive progression of DCIS occur at the preinvasive stage, and these events include changes in the expression of miRNAs. Aberrant expression of miRNAs can influence specific oncogenic or tumor-suppressive pathways required for breast cancer progression. miRNAs in DCIS have been shown to influence hormone signaling, cell-cell adhesion, epithelial-to-mesenchymal transition, transforming growth factor ß signaling, maintenance of cancer stem cells, and modulation of the extracellular matrix. Additionally, extracellular DCIS miRNAs, such as those found in exosomes, may promote invasive progression by modifying the tumor microenvironment. Here, we review the miRNAs that have been identified in DCIS and how they may contribute to the progression to invasive disease. We also touch on the current state of miRNA therapy development, including the current challenges, and discuss the key future perspectives for research into miRNA function for the purpose of miRNA therapy development for DCIS.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , Carcinoma Intraductal não Infiltrante/diagnóstico , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias da Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Progressão da Doença , Feminino , Humanos , Invasividade Neoplásica , Prognóstico
5.
Cell Commun Signal ; 18(1): 130, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819370

RESUMO

BACKGROUND: Exosomes are extracellular vesicles containing a variety of biological molecules including microRNAs (miRNAs). We have recently demonstrated that certain miRNA species are selectively and highly enriched in pancreatic cancer exosomes with miR-1246 being the most abundant. Exosome miRNAs have been shown to mediate intercellular communication in the tumor microenvironment and promote cancer progression. Therefore, understanding how exosomes selectively enrich specific miRNAs to initiate exosome miRNA signaling in cancer cells is critical to advancing cancer exosome biology. RESULTS: The aim of this study was to identify RNA binding proteins responsible for selective enrichment of exosome miRNAs in cancer cells. A biotin-labeled miR-1246 probe was used to capture RNA binding proteins (RBPs) from PANC-1 cells. Among the RBPs identified through proteomic analysis, SRSF1, EIF3B and TIA1 were highly associated with the miR-1246 probe. RNA immunoprecipitation (RIP) and electrophoretic mobility shift assay (EMSA) confirmed the binding of SRSF1 to miR-1246. Lentivirus shRNA knockdown of SRSF1 in pancreatic cancer cells selectively reduced exosome miRNA enrichment whereas GFP-SRSF1 overexpression enhanced the enrichment as analyzed by next generation small RNA sequencing and qRT-PCR. miRNA sequence motif analysis identified a common motif shared by 36/45 of SRSF1-associated exosome miRNAs. EMSA confirmed that shared motif decoys inhibit the binding of SRSF1 to the miR-1246 sequence. CONCLUSIONS: We conclude that SRSF1 mediates selective exosome miRNA enrichment in pancreatic cancer cells by binding to a commonly shared miRNA sequence motif. Video Abstract.


Assuntos
Exossomos/genética , MicroRNAs/metabolismo , Neoplasias/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Exossomos/metabolismo , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , Motivos de Nucleotídeos/genética , Ligação Proteica , Reprodutibilidade dos Testes
6.
Am J Pathol ; 188(3): 542-549, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29246496

RESUMO

Ductal carcinoma in situ (DCIS) is defined as a proliferation of neoplastic cells within the duct of the mammary gland that have not invaded into the surrounding stroma. DCIS is considered a precursor to invasive ductal carcinoma (IDC); however, approximately half of DCIS may progress to IDC, if left untreated. Current research has shown that the genomic and transcriptomic changes are present in DCIS before the emergence of invasive disease, indicating that the malignant nature of the DCIS is defined before invasion. However, important questions remain surrounding the specific changes and processes required for malignant progression and identification of prognostic indicators of aggressiveness. miRNAs are small regulatory RNAs that can modulate gene expression by complementary binding to target mRNAs and inducing translational repression and/or mRNA degradation. In the past decade, research has shown that miRNA expression is dysregulated in IDC and that these changes are already present at the DCIS stage. Therefore, changes in miRNA expression may provide the necessary information to identify a clinical indicator of the aggressiveness of DCIS. Herein, we review the miRNA signatures identified in DCIS, describe how these signatures may be used to predict the aggressiveness of DCIS, and discuss future perspectives for DCIS biomarker discovery.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , MicroRNAs/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/metabolismo , Progressão da Doença , Feminino , Humanos , MicroRNAs/genética
7.
BMC Cancer ; 19(1): 642, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253120

RESUMO

BACKGROUND: Altered expression of microRNAs (miRNAs) is known to contribute to cancer progression. miR-23b and miR-27b, encoded within the same miRNA cluster, are reported to have both tumor suppressive and oncogenic activity across human cancers, including breast cancer. METHODS: To clarify this dichotomous role in breast cancer, miR-23b and miR-27b were knocked out using CRISPR/Cas9 gene knockout technology, and the role of endogenous miR-23b and miR-27b was examined in a breast cancer model system in vitro and in vivo. RESULTS: Characterization of the knockout cells in vitro demonstrated that miR-23b and miR-27b are indeed oncogenic miRNAs in MCF7 breast cancer cells. miR-23b and miR-27b knockout reduced tumor growth in xenograft nude mice fed a standard diet, supporting their oncogenic role in vivo. However, when xenograft mice were provided a fish-oil diet, miR-27b depletion, but not miR-23b depletion, compromised fish-oil-induced suppression of xenograft growth, indicating a context-dependent nature of miR-27b oncogenic activity. CONCLUSIONS: Our results demonstrate that miR-23b and miR-27b are primarily oncogenic in MCF7 breast cancer cells and that miR-27b may have tumor suppressive activity under certain circumstances.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , Animais , Neoplasias da Mama/dietoterapia , Neoplasias da Mama/patologia , Sistemas CRISPR-Cas , Movimento Celular , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Suplementos Nutricionais , Feminino , Óleos de Peixe/administração & dosagem , Óleos de Peixe/farmacologia , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Células MCF-7 , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cell Commun Signal ; 17(1): 13, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30782165

RESUMO

BACKGROUND: Exosomes are small membrane-bound vesicles that contribute to tumor progression and metastasis by mediating cell-to-cell communication and modifying the tumor microenvironment at both local and distant sites. However, little is known about the predominant factors in exosomes that contribute to breast cancer (BC) progression. MTA1 is a transcriptional co-regulator that can act as both a co-activator and co-repressor to regulate pathways that contribute to cancer development. MTA1 is also one of the most up-regulated proteins in cancer, whose expression correlates with cancer progression, poor prognosis and increased metastatic potential. METHODS: We identified MTA1 in BC exosomes by antibody array and confirmed expression of exosome-MTA1 across five breast cancer cells lines. Ectopic expression of tdTomato-tagged MTA1 and exosome transfer were examined by fluorescent microscopy. CRISPR/Cas9 genetic engineering was implemented to knockout MTA1 in MCF7 and MDA-MB-231 breast cancer cells. Reporter assays were used to monitor hypoxia and estrogen receptor signaling regulation by exosome-MTA1 transfer. RESULTS: Ectopic overexpression of tdTomato-MTA1 in BC cell lines demonstrated exosome transfer of MTA1 to BC and vascular endothelial cells. MTA1 knockout in BC cells reduced cell proliferation and attenuated the hypoxic response in these cells, presumably through its co-repressor function, which could be rescued by the addition of exosomes containing MTA1. On the other hand, consistent with its co-activator function, estrogen receptor signaling was enhanced in MTA1 knockout cells and could be reversed by addition of MTA1-exosomes. Importantly, MTA1 knockout sensitized hormone receptor negative cells to 4-hydroxy tamoxifen treatment, which could be reversed by the addition of MTA1-exosomes. CONCLUSIONS: This is the first report showing that BC exosomes contain MTA1 and can transfer it to other cells resulting in changes to hypoxia and estrogen receptor signaling in the tumor microenvironment. These results, collectively, provide evidence suggesting that exosome-mediated transfer of MTA1 contributes to BC progression by modifying cellular responses to important signaling pathways and that exosome-MTA1 may be developed as a biomarker and therapeutic target for BC.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Exossomos/metabolismo , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Biomarcadores Tumorais/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Exossomos/efeitos dos fármacos , Feminino , Ontologia Genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologia , Transativadores
9.
RNA Biol ; 16(6): 770-784, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30806147

RESUMO

miR-1246 is considered an oncomiR in various cancer types. However, the origin and biogenesis of miR-1246 remain controversial which often leads to misinterpretation of its detection and biological function, and inevitably masking its mechanisms of action. Using next generation small RNA sequencing, CRISPR-Cas9 knockout, siRNA knockdown and the poly-A tailing SYBR qRT-PCR, we examined the biogenesis of exosomal miR-1246 in human cancer cell model systems. We found that miR-1246 is highly enriched in exosomes derived from human cancer cells and that it originates from RNU2-1, a small nuclear RNA and essential component of the U2 complex of the spliceosome. Knockdown of Drosha and Dicer did not reduce exosomal miR-1246 levels, indicating that exosomal miR-1246 is generated in a Drosha- and Dicer-independent manner. Direct digestion of cellular lysate by RNase A and knockdown of the RNU2-1 binding protein SmB/B' demonstrated that exosomal miR-1246 is a RNU2-1 degradation product. Furthermore, the GCAG motif present in the RUN2-1 transcript was shown to mediate miR-1246 enrichment in cancer exosomes. We conclude that exosome miR-1246 is derived from RNU2-1 degradation through a non-canonical microRNA biogenesis process. These findings reveal the origin of an oncomiR in human cancer cells, providing guidance in understanding miR-1246 detection and biological function. Abbreviations: CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats; miRNA, microRNA; PDAC, pancreatic ductal adenocarcinoma; RNU2-1, U2 small nuclear RNA; RT-PCR, Reverse transcription polymerase chain reaction; sgRNA, single-guide RNA.


Assuntos
Exossomos/genética , MicroRNAs/metabolismo , Neoplasias/genética , Linhagem Celular , Linhagem Celular Tumoral , Humanos , MicroRNAs/química , MicroRNAs/genética , Neoplasias/metabolismo , Motivos de Nucleotídeos , RNA Nuclear/metabolismo
11.
Breast Cancer Res ; 18(1): 90, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27608715

RESUMO

BACKGROUND: microRNAs are promising candidate breast cancer biomarkers due to their cancer-specific expression profiles. However, efforts to develop circulating breast cancer biomarkers are challenged by the heterogeneity of microRNAs in the blood. To overcome this challenge, we aimed to develop a molecular profile of microRNAs specifically secreted from breast cancer cells. Our first step towards this direction relates to capturing and analyzing the contents of exosomes, which are small secretory vesicles that selectively encapsulate microRNAs indicative of their cell of origin. To our knowledge, circulating exosome microRNAs have not been well-evaluated as biomarkers for breast cancer diagnosis or monitoring. METHODS: Exosomes were collected from the conditioned media of human breast cancer cell lines, mouse plasma of patient-derived orthotopic xenograft models (PDX), and human plasma samples. Exosomes were verified by electron microscopy, nanoparticle tracking analysis, and western blot. Cellular and exosome microRNAs from breast cancer cell lines were profiled by next-generation small RNA sequencing. Plasma exosome microRNA expression was analyzed by qRT-PCR analysis. RESULTS: Small RNA sequencing and qRT-PCR analysis showed that several microRNAs are selectively encapsulated or highly enriched in breast cancer exosomes. Importantly, the selectively enriched exosome microRNA, human miR-1246, was detected at significantly higher levels in exosomes isolated from PDX mouse plasma, indicating that tumor exosome microRNAs are released into the circulation and can serve as plasma biomarkers for breast cancer. This observation was extended to human plasma samples where miR-1246 and miR-21 were detected at significantly higher levels in the plasma exosomes of 16 patients with breast cancer as compared to the plasma exosomes of healthy control subjects. Receiver operating characteristic curve analysis indicated that the combination of plasma exosome miR-1246 and miR-21 is a better indicator of breast cancer than their individual levels. CONCLUSIONS: Our results demonstrate that certain microRNA species, such as miR-21 and miR-1246, are selectively enriched in human breast cancer exosomes and significantly elevated in the plasma of patients with breast cancer. These findings indicate a potential new strategy to selectively analyze plasma breast cancer microRNAs indicative of the presence of breast cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Exossomos/genética , Exossomos/metabolismo , MicroRNAs/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Curva ROC
12.
Mol Cancer ; 14: 133, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26178901

RESUMO

BACKGROUND: Docosahexaenoic acid (DHA) is a natural compound with anticancer and anti-angiogenesis activity that is currently under investigation as both a preventative agent and an adjuvant to breast cancer therapy. However, the precise mechanisms of DHA's anticancer activities are unclear. It is understood that the intercommunication between cancer cells and their microenvironment is essential to tumor angiogenesis. Exosomes are extracellular vesicles that are important mediators of intercellular communication and play a role in promoting angiogenesis. However, very little is known about the contribution of breast cancer exosomes to tumor angiogenesis or whether exosomes can mediate DHA's anticancer action. RESULTS: Exosomes were collected from MCF7 and MDA-MB-231 breast cancer cells after treatment with DHA. We observed an increase in exosome secretion and exosome microRNA contents from the DHA-treated cells. The expression of 83 microRNAs in the MCF7 exosomes was altered by DHA (>2-fold). The most abundant exosome microRNAs (let-7a, miR-23b, miR-27a/b, miR-21, let-7, and miR-320b) are known to have anti-cancer and/or anti-angiogenic activity. These microRNAs were also increased by DHA treatment in the exosomes from other breast cancer lines (MDA-MB-231, ZR751 and BT20), but not in exosomes from normal breast cells (MCF10A). When DHA-treated MCF7 cells were co-cultured with or their exosomes were directly applied to endothelial cell cultures, we observed an increase in the expression of these microRNAs in the endothelial cells. Furthermore, overexpression of miR-23b and miR-320b in endothelial cells decreased the expression of their pro-angiogenic target genes (PLAU, AMOTL1, NRP1 and ETS2) and significantly inhibited tube formation by endothelial cells, suggesting that the microRNAs transferred by exosomes mediate DHA's anti-angiogenic action. These effects could be reversed by knockdown of the Rab GTPase, Rab27A, which controls exosome release. CONCLUSIONS: We conclude that DHA alters breast cancer exosome secretion and microRNA contents, which leads to the inhibition of angiogenesis. Our data demonstrate that breast cancer exosome signaling can be targeted to inhibit tumor angiogenesis and provide new insight into DHA's anticancer action, further supporting its use in cancer therapy.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Exossomos/metabolismo , MicroRNAs/genética , Transdução de Sinais/efeitos dos fármacos , Transporte Biológico , Linhagem Celular Tumoral , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , MicroRNAs/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Reprodutibilidade dos Testes , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab27 de Ligação ao GTP
13.
Transl Psychiatry ; 14(1): 199, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678012

RESUMO

Major depressive disorder (MDD) is associated with interoceptive processing dysfunctions, but the molecular mechanisms underlying this dysfunction are poorly understood. This study combined brain neuronal-enriched extracellular vesicle (NEEV) technology and serum markers of inflammation and metabolism with Functional Magnetic Resonance Imaging (fMRI) to identify the contribution of gene regulatory pathways, in particular micro-RNA (miR) 93, to interoceptive dysfunction in MDD. Individuals with MDD (n = 41) and healthy comparisons (HC; n = 35) provided blood samples and completed an interoceptive attention task during fMRI. EVs were separated from plasma using a precipitation method. NEEVs were enriched by magnetic streptavidin bead immunocapture utilizing a neural adhesion marker (L1CAM/CD171) biotinylated antibody. The origin of NEEVs was validated with two other neuronal markers - neuronal cell adhesion molecule (NCAM) and ATPase Na+/K+ transporting subunit alpha 3 (ATP1A3). NEEV specificities were confirmed by flow cytometry, western blot, particle size analyzer, and transmission electron microscopy. NEEV small RNAs were purified and sequenced. Results showed that: (1) MDD exhibited lower NEEV miR-93 expression than HC; (2) within MDD but not HC, those individuals with the lowest NEEV miR-93 expression had the highest serum concentrations of interleukin (IL)-1 receptor antagonist, IL-6, tumor necrosis factor, and leptin; and (3) within HC but not MDD, those participants with the highest miR-93 expression showed the strongest bilateral dorsal mid-insula activation during interoceptive versus exteroceptive attention. Since miR-93 is regulated by stress and affects epigenetic modulation by chromatin re-organization, these results suggest that healthy individuals but not MDD participants show an adaptive epigenetic regulation of insular function during interoceptive processing. Future investigations will need to delineate how specific internal and external environmental conditions contribute to miR-93 expression in MDD and what molecular mechanisms alter brain responsivity to body-relevant signals.


Assuntos
Transtorno Depressivo Maior , Vesículas Extracelulares , Interocepção , MicroRNAs , Feminino , Humanos , Masculino , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Interocepção/fisiologia , Imageamento por Ressonância Magnética , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo
14.
Cell Physiol Biochem ; 32(5): 1255-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24247298

RESUMO

BACKGROUND AND AIMS: Clofibrate, an established PPARα ligand, has recently been shown to have anticancer activity yet its mechanisms of action remain to be characterized. This study examined the effect of clofibrate on heme oxygenase-1 (HO-1) gene expression in A2780 (human ovarian cancer) and DU145 (human prostate cancer) cells. METHODS AND RESULTS: We demonstrate that clofibrate induces HO-1 expression in a concentration- and time-dependent manner. The induction of HO-1 by clofibrate was detected at both mRNA and protein levels and the HO-1 gene promoter activity was also dramatically induced by clofibrate, indicating that clofibrate up-regulates HO-1 gene transcription. Surprisingly, the induction of HO-1 by clofibrate was mediated by the Nrf2 signaling pathway, not by the PPARα pathway. This was primarily demonstrated by siRNA knockdown of Nrf2 expression that significantly attenuated clofibrate-induced HO-1 gene transcription, and siRNA knockdown of PPARα that had no effect on clofibrate-induced HO-1 promoter activity. Furthermore, deletion of the antioxidant response elements (AREs) in the HO-1 gene promoter diminished clofibrate-induced HO-1 transcription and deletion of the PPAR response elements (PPREs) had no such effect. Likewise, application of PPARα antagonists had no effect on clofibrate-induced HO-1 expression. CONCLUSION: Clofibrate induces HO-1 gene expression in cancer cells through a PPARα-independent mechanism and the Nrf2 signaling pathway is indispensible for this induction.


Assuntos
Clofibrato/farmacologia , Heme Oxigenase-1/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , PPAR alfa/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular Tumoral/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Fator 2 Relacionado a NF-E2/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , PPAR alfa/genética , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Elementos de Resposta/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
15.
Cell Physiol Biochem ; 32(1): 100-10, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23868099

RESUMO

BACKGROUND/AIMS: This study investigated the effects of zinc on heme oxygenase-1 (HO-1) expression in human cancer cells. METHODS/RESULTS: Zinc at sub-cytotoxic concentrations (50-100 µM) induces HO-1 expression in the MDA-MB-231 (human breast cancer) and A2780 (human ovarian cancer) cell lines in a concentration- and time-dependent manner. The induction of HO-1 by zinc was detected after 4-6 hours of treatment, reached maximal level at 8 hours, and declined thereafter. Using a human HO-1 gene promoter reporter construct, we identified two antioxidant response elements (AREs) that mediated the zinc-induced increase in HO-1 gene transcription, indicating that the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling pathway is involved in this event. This assumption was supported by the observations that knockdown of Nrf2 expression compromised the zinc-induced increase in HO-1 gene transcription, and that zinc increased Nrf2 protein expression and the Nrf2 binding to the AREs. Additionally, we found that the zinc-induced HO-1 gene transcription can be enhanced by clioquinol, a zinc ionophore, and reversed by pretreatment with TPEN, a known zinc chelator, indicating that an increase in intracellular zinc levels is responsible for this induction. CONCLUSION: These findings demonstrate that zinc at sub-cytotoxic concentrations induces HO-1 expression in human cancer cells. The biological significance of this induction merits further investigation.


Assuntos
Heme Oxigenase-1/metabolismo , Transcrição Gênica/efeitos dos fármacos , Zinco/toxicidade , Linhagem Celular Tumoral , Clioquinol/farmacologia , Etilenodiaminas/farmacologia , Heme Oxigenase-1/genética , Humanos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , PPAR alfa/antagonistas & inibidores , PPAR alfa/genética , PPAR alfa/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Elementos de Resposta , Transdução de Sinais
16.
Int J Mol Sci ; 14(7): 14240-69, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23839094

RESUMO

The development of human cancers is a multistep process in which normal cells acquire characteristics that ultimately lead to their conversion into cancer cells. Many obstacles must be overcome for this process to occur; of these obstacles, is the ability to survive an inhospitable microenvironment. It is recognized that the intercommunication between tumor cells and their surrounding microenvironment is essential to overcoming this obstacle and for the tumor to progress, metastasize and establish itself at distant sites. Exosomes are membrane-derived vesicles that have recently been recognized as important mediators of intercellular communication, as they carry lipids, proteins, mRNAs and microRNAs that can be transferred to a recipient cell via fusion of the exosome with the target cell membrane. In the context of cancer cells, this process entails the transfer of cancer-promoting cellular contents to surrounding cells within the tumor microenvironment or into the circulation to act at distant sites, thereby enabling cancer progression. In this process, the transfer of exosomal microRNAs to a recipient cell where they can regulate target gene expression is of particular interest, both in understanding the basic biology of cancer progression and for the development of therapeutic approaches. This review discusses the exosome-mediated intercellular communication via microRNAs within the tumor microenvironment in human cancers, with a particular focus on breast cancer exosomes.


Assuntos
Comunicação Celular , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , MicroRNAs/metabolismo , Neoplasias/metabolismo , RNA Neoplásico/metabolismo , Animais , Micropartículas Derivadas de Células/patologia , Exossomos/patologia , Humanos , Neoplasias/patologia , Neoplasias/terapia , Microambiente Tumoral
17.
Cancer Lett ; 578: 216437, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37838282

RESUMO

Ovarian cancer (OvCa) has a dismal prognosis because of its late-stage diagnosis and the emergence of chemoresistance. Doublecortin-like kinase 1 (DCLK1) is a serine/threonine kinase known to regulate cancer cell "stemness", epithelial-mesenchymal transition (EMT), and drug resistance. Here we show that DCLK1 is a druggable target that promotes chemoresistance and tumor progression of high-grade serous OvCa (HGSOC). Importantly, high DCLK1 expression significantly correlates with poor overall and progression-free survival in OvCa patients treated with platinum chemotherapy. DCLK1 expression was elevated in a subset of HGSOC cell lines in adherent (2D) and spheroid (3D) cultures, and the expression was further increased in cisplatin-resistant (CPR) spheroids relative to their sensitive controls. Using cisplatin-sensitive and resistant isogenic cell lines, pharmacologic inhibition (DCLK1-IN-1), and genetic manipulation, we demonstrate that DCLK1 inhibition was effective at re-sensitizing cells to cisplatin, reducing cell proliferation, migration, and invasion. Using kinase domain mutants, we demonstrate that DCLK1 kinase activity is critical for mediating CPR. The combination of cisplatin and DCLK1-IN-1 showed a synergistic cytotoxic effect against OvCa cells in 3D conditions. Targeted gene expression profiling revealed that DCLK1 inhibition in CPR OvCa spheroids significantly reduced TGFß signaling, and EMT. We show in vivo efficacy of combined DCLK1 inhibition and cisplatin in significantly reducing tumor metastases. Our study shows that DCLK1 is a relevant target in OvCa and combined targeting of DCLK1 in combination with existing chemotherapy could be a novel therapeutic approach to overcome resistance and prevent OvCa recurrence.


Assuntos
Quinases Semelhantes a Duplacortina , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
18.
Brain Behav Immun Health ; 27: 100582, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36605933

RESUMO

Ibuprofen, a non-steroidal, anti-inflammatory drug, modulates inflammation but may also have neuroprotective effects on brain health that are poorly understood. Astrocyte-enriched extracellular vesicles (AEEVs) facilitate cell-to-cell communication and - among other functions - regulate inflammation and metabolism via microribonucleic acids (miRNAs). Dysfunctions in reward-related processing and inflammation have been proposed to be critical pathophysiological pathways in individuals with mood disorders. This investigation examined whether changes in AEEV cargo induced by an anti-inflammatory agent results in inflammatory modulation that is associated with reward-related processing. Data from a double-blind, randomized, repeated-measures study in healthy volunteers were used to examine the effects of AEEV miRNAs on brain activation during reward-related processing. In three separate visits, healthy participants (N = 20) received a single dose of either placebo, 200 mg, or 600 mg of ibuprofen, completed the monetary incentive delay task during functional magnetic resonance imaging, and provided a blood sample for cytokine and AEEV collection. AEEV miRNA content profiling showed that ibuprofen dose-dependently increased AEEV miR-23b-3p expression with greater increase following the 600 mg administration than placebo. Those individuals who received 600 mg and showed the highest miR-23b-3p expression also showed the (a) lowest serum tumor necrosis factor (TNF) and interleukin-17A (IL-17A) concentrations; and had the (b) highest striatal brain activation during reward anticipation. These results support the hypothesis that ibuprofen alters the composition of miRNAs in AEEVs. This opens the possibility that AEEV cargo could be used to modulate brain processes that are important for mental health.

19.
Breast Cancer Res ; 13(2): R24, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21375733

RESUMO

INTRODUCTION: microRNA (miRNA) are short, noncoding RNA that negatively regulate gene expression and may play a causal role in invasive breast cancer. Since many genetic aberrations of invasive disease are detectable in early stages, we hypothesized that miRNA expression dysregulation and the predicted changes in gene expression might also be found in early breast neoplasias. METHODS: Expression profiling of 365 miRNA by real-time quantitative polymerase chain reaction assay was combined with laser capture microdissection to obtain an epithelium-specific miRNA expression signature of normal breast epithelium from reduction mammoplasty (RM) (n = 9) and of paired samples of histologically normal epithelium (HN) and ductal carcinoma in situ (DCIS) (n = 16). To determine how miRNA may control the expression of codysregulated mRNA, we also performed gene expression microarray analysis in the same paired HN and DCIS samples and integrated this with miRNA target prediction. We further validated several target pairs by modulating the expression levels of miRNA in MCF7 cells and measured the expression of target mRNA and proteins. RESULTS: Thirty-five miRNA were aberrantly expressed between RM, HN and DCIS. Twenty-nine miRNA and 420 mRNA were aberrantly expressed between HN and DCIS. Combining these two data sets with miRNA target prediction, we identified two established target pairs (miR-195:CCND1 and miR-21:NFIB) and tested several novel miRNA:mRNA target pairs. Overexpression of the putative tumor suppressor miR-125b, which is underexpressed in DCIS, repressed the expression of MEMO1, which is required for ErbB2-driven cell motility (also a target of miR-125b), and NRIP1/RIP140, which modulates the transcriptional activity of the estrogen receptor. Knockdown of the putative oncogenic miRNA miR-182 and miR-183, both highly overexpressed in DCIS, increased the expression of chromobox homolog 7 (CBX7) (which regulates E-cadherin expression), DOK4, NMT2 and EGR1. Augmentation of CBX7 by knockdown of miR-182 expression, in turn, positively regulated the expression of E-cadherin, a key protein involved in maintaining normal epithelial cell morphology, which is commonly lost during neoplastic progression. CONCLUSIONS: These data provide the first miRNA expression profile of normal breast epithelium and of preinvasive breast carcinoma. Further, we demonstrate that altered miRNA expression can modulate gene expression changes that characterize these early cancers. We conclude that miRNA dysregulation likely plays a substantial role in early breast cancer development.


Assuntos
Neoplasias da Mama/genética , Carcinoma Intraductal não Infiltrante/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Idoso , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caderinas/biossíntese , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Linhagem Celular Tumoral , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pessoa de Meia-Idade , Invasividade Neoplásica , Ferroproteínas não Heme/biossíntese , Complexo Repressor Polycomb 1 , RNA Mensageiro/biossíntese , Proteínas Repressoras/biossíntese
20.
PLoS One ; 16(11): e0259563, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34784377

RESUMO

microRNAs (miRNA) in extracellular vesicles (EVs) have been investigated as potential biomarkers for pancreatic ductal adenocarcinoma (PDAC). However, a mixed population of EVs is often obtained using conventional exosome isolation methods for biomarker development. EVs are derived from different cellular processes and present in various sizes, therefore miRNA expression among them is undoubtedly different. We developed a simple protocol utilizing sequential filtration and ultracentrifugation to separate PDAC EVs into three groups, one with an average diameter of more than 220 nm, named operational 3 (OP3); one with average diameters between 100-220 nm, named operational 2 (OP2); and another with average diameters around 100 nm, named operational 1 (OP1)). EVs were isolated from conditioned cell culture media and plasma of human PDAC xenograft mice and early stage PDAC patients, and verified by nanoparticle tracking, western blot, and electronic microscopy. We demonstrate that exosome specific markers are only enriched in the OP1 group. qRT-PCR analysis of miRNA expression in EVs from PDAC cells revealed that expression of miR-196a and miR-1246, two previously identified miRNAs highly enriched in PDAC cell-derived exosomes, is significantly elevated in the OP1 group relative to the other EV groups. This was confirmed using plasma EVs from PDAC xenograft mice and patients with localized PDAC. Our results indicate that OP1 can be utilized for the identification of circulating EV miRNA signatures as potential biomarkers for PDAC.


Assuntos
Adenocarcinoma/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Neoplasias Pancreáticas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Western Blotting , Linhagem Celular Tumoral , MicroRNA Circulante/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Microscopia Eletrônica , Pessoa de Meia-Idade , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA