Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(4): e17279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619007

RESUMO

There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors.


Assuntos
Energia Solar , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Mudança Climática , Poluição Ambiental , Tempo (Meteorologia)
2.
Photochem Photobiol Sci ; 23(4): 629-650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512633

RESUMO

This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.


Assuntos
Plásticos , Poluentes Químicos da Água , Humanos , Plásticos/toxicidade , Ecossistema , Raios Ultravioleta , Mudança Climática , Poluentes Químicos da Água/análise
3.
Bull Environ Contam Toxicol ; 112(4): 53, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565770

RESUMO

The objectives of this study were to: (1) characterize the exposure of aquatic ecosystems in Southern Ontario, Canada to pesticides between 2002 and 2016 by constructing environmental exposure distributions (EEDs), including censored data; and (2) predict the probability of exceeding acute regulatory guidelines. Surface water samples were collected over a 15-year period by Environment and Climate Change Canada. The dataset contained 167 compounds, sampled across 114 sites, with a total of 2,213 samples. There were 67,920 total observations of which 55,058 were non-detects (81%), and 12,862 detects (19%). The most commonly detected compound was atrazine, with a maximum concentration of 18,600 ngL- 1 and ~ 4% chance of exceeding an acute guideline (1,000 ngL- 1) in rivers and streams. Using Southern Ontario as a case study, this study provides insight into the risk that pesticides pose to aquatic ecosystems and the utility of EEDs that include censored data for the purpose of risk assessment.


Assuntos
Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Ontário , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Rios , Probabilidade , Medição de Risco
4.
Environ Sci Technol ; 57(25): 9266-9276, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37267462

RESUMO

Due to the sudden nature of oil spills, few controlled studies have documented how oil weathers immediately following accidental release into a natural lake environment. Here, we evaluated the weathering patterns of Cold Lake Winter Blend, a diluted bitumen (dilbit) product, by performing a series of controlled spills into limnocorrals installed in a freshwater lake in Northern Ontario, Canada. Using a regression-based design, we added seven different dilbit volumes, ranging from 1.5 to 180 L, resulting in oil-to-water ratios between 1:71,000 (v/v) and 1:500 (v/v). We monitored changes in the composition of various petroleum hydrocarbons (PHCs), including n-alkanes, polycyclic aromatic hydrocarbons (PAHs), and oil biomarkers in dilbit over time, as it naturally weathered for 70 days. Depletion rate constants (kD) of n-alkanes and PAHs ranged from 0.0009 to 0.41 d-1 and 0.0008 to 0.38 d-1, respectively. There was no significant relationship between kD and spill volume, suggesting that spill size did not influence the depletion of petroleum hydrocarbons from the slick. Diagnostic ratios calculated from concentrations of n-alkanes, isoprenoids, and PAHs indicated that evaporation and photooxidation were major processes contributing to dilbit weathering, whereas dissolution and biodegradation were less important. These results demonstrate the usefulness of large scale field studies carried out under realistic environmental conditions to elucidate the role of different weathering processes following a dilbit spill.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos/química , Lagos/química , Alcanos , Ontário , Poluentes Químicos da Água/análise
5.
J Toxicol Environ Health B Crit Rev ; 24(6): 223-306, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34219616

RESUMO

Atrazine is a triazine herbicide used predominantly on corn, sorghum, and sugarcane in the US. Its use potentially overlaps with the ranges of listed (threatened and endangered) species. In response to registration review in the context of the Endangered Species Act, we evaluated potential direct and indirect impacts of atrazine on listed species and designated critical habitats. Atrazine has been widely studied, extensive environmental monitoring and toxicity data sets are available, and the spatial and temporal uses on major crops are well characterized. Ranges of listed species are less well-defined, resulting in overly conservative designations of "May Effect". Preferences for habitat and food sources serve to limit exposure among many listed animal species and animals are relatively insensitive. Atrazine does not bioaccumulate, further diminishing exposures among consumers and predators. Because of incomplete exposure pathways, many species can be eliminated from consideration for direct effects. It is toxic to plants, but even sensitive plants tolerate episodic exposures, such as those occurring in flowing waters. Empirical data from long-term monitoring programs and realistic field data on off-target deposition of drift indicate that many other listed species can be removed from consideration because exposures are below conservative toxicity thresholds for direct and indirect effects. Combined with recent mitigation actions by the registrant, this review serves to refine and focus forthcoming listed species assessment efforts for atrazine.Abbreviations: a.i. = Active ingredient (of a pesticide product). AEMP = Atrazine Ecological Monitoring Program. AIMS = Avian Incident Monitoring SystemArach. = Arachnid (spiders and mites). AUC = Area Under the Curve. BE = Biological Evaluation (of potential effects on listed species). BO = Biological Opinion (conclusion of the consultation between USEPA and the Services with respect to potential effects in listed species). CASM = Comprehensive Aquatic System Model. CDL = Crop Data LayerCN = field Curve Number. CRP = Conservation Reserve Program (lands). CTA = Conditioned Taste Avoidance. DAC = Diaminochlorotriazine (a metabolite of atrazine, also known by the acronym DACT). DER = Data Evaluation Record. EC25 = Concentration causing a specified effect in 25% of the tested organisms. EC50 = Concentration causing a specified effect in 50% of the tested organisms. EC50RGR = Concentration causing a 50% reduction in relative growth rate. ECOS = Environmental Conservation Online System. EDD = Estimated Daily Dose. EEC = Expected Environmental Concentration. EFED = Environmental Fate and Effects Division (of the USEPA). EFSA = European Food Safety Agency. EIIS = Ecological Incident Information System. ERA = Environmental Risk Assessment. ESA = Endangered Species Act. ESU = Evolutionarily Significant UnitsFAR = Field Application RateFIFRA = Federal Insecticide, Fungicide, and Rodenticide Act. FOIA = Freedom of Information Act (request). GSD = Genus Sensitivity Distribution. HC5 = Hazardous Concentration for ≤ 5% of species. HUC = Hydrologic Unit Code. IBM = Individual-Based Model. IDS = Incident Data System. KOC = Partition coefficient between water and organic matter in soil or sediment. KOW = Octanol-Water partition coefficient. LC50 = Concentration lethal to 50% of the tested organisms. LC-MS-MS = Liquid Chromatograph with Tandem Mass Spectrometry. LD50 = Dose lethal to 50% of the tested organisms. LAA = Likely to Adversely Affect. LOAEC = Lowest-Observed-Adverse-Effect Concentration. LOC = Level of Concern. MA = May Affect. MATC = Maximum Acceptable Toxicant Concentration. NAS = National Academy of Sciences. NCWQR = National Center of Water Quality Research. NE = No Effect. NLAA = Not Likely to Adversely Affect. NMFS = National Marine Fisheries Service. NOAA = National Oceanic and Atmospheric Administration. NOAEC = No-Observed-Adverse-Effect Concentration. NOAEL = No-Observed-Adverse-Effect Dose-Level. OECD = Organization of Economic Cooperation and Development. PNSP = Pesticide National Synthesis Project. PQ = Plastoquinone. PRZM = Pesticide Root Zone Model. PWC = Pesticide in Water Calculator. QWoE = Quantitative Weight of Evidence. RGR = Relative growth rate (of plants). RQ = Risk Quotient. RUD = Residue Unit Doses. SAP = Science Advisory Panel (of the USEPA). SGR = Specific Growth Rate. SI = Supplemental Information. SSD = Species Sensitivity Distribution. SURLAG = Surface Runoff Lag Coefficient. SWAT = Soil & Water Assessment Tool. SWCC = Surface Water Concentration Calculator. UDL = Use Data Layer (for pesticides). USDA = United States Department of Agriculture. USEPA = United States Environmental Protection Agency. USFWS = United States Fish and Wildlife Service. USGS = United States Geological Survey. WARP = Watershed Regressions for Pesticides.


Assuntos
Atrazina/toxicidade , Monitoramento Ambiental/métodos , Herbicidas/toxicidade , Animais , Atrazina/análise , Herbicidas/análise , Medição de Risco/métodos , Especificidade da Espécie , Estados Unidos
6.
Arch Environ Contam Toxicol ; 81(1): 123-132, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33891147

RESUMO

This paper presents a semiquantitative method to help ecotoxicologists evaluate the consistency of data within the available peer-reviewed literature. In this case study, we queried whether there is consistent evidence of direct toxicity in Anurans exposed to atrazine at concentrations ≤ 100 µg/L under laboratory conditions. Atrazine was selected because of the relatively large repository of Anuran toxicity data. To accomplish this, we interrogated available data found in recent quantitative weight-of-evidence risk assessments for atrazine with a series of yes or no questions developed a priori. The questions examined consistency of reported effects within and between studies, within and between species, and across a wide range of endpoints categories (e.g., survivorship, growth and development, reproduction). The analysis found no compelling evidence of a consistent direct effect in Anurans around growth and development, reproduction, or survivorship at concentrations of up to at least 100 µg/L atrazine in laboratory studies. Further work is needed to refine the approach, including accounting for the magnitude of the reported effects. However, we recommend that ecotoxicologists employ some method of formal consistency of effects assessment method routinely before performing toxicity tests, in the contextualizing of new data, and in reviews of contaminants.


Assuntos
Atrazina , Herbicidas , Poluentes Químicos da Água , Animais , Anuros , Atrazina/toxicidade , Herbicidas/toxicidade , Laboratórios , Poluentes Químicos da Água/toxicidade
7.
Crit Rev Toxicol ; 49(8): 670-709, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31939690

RESUMO

Quantitative weight of evidence (QWoE) provides a framework and process for evaluating different toxicological studies based on quality and relevance of the results. This framework allows for data from these studies to be combined in separate lines of evidence to address causality, and relevance to environmental risks. In 2014, such a QWoE that examined the body of available company reports and peer reviewed literature regarding the effects of the herbicide atrazine on fish, amphibians, and reptiles was published. Since that time, new studies have been conducted and/or published. One of the advantages of the QWoE framework is that additional information can be added as it becomes available. Thus, these new studies were evaluated in the same manner as previously and the new data incorporated into the existing QWoE. As before, the new updated QWoE was based on the same process of objective scoring of individual studies with respect to the quality of the methods and the relevance of individual responses to the apical endpoints of survival, growth, development, and reproduction. These new data did not identify new responses or indicate any relevant effects of atrazine. The new updated QWoE analysis concluded that atrazine does not adversely affect fish, amphibians, and reptiles, at environmentally relevant concentrations (<100 µg atrazine/L), which is consistent with the previous conclusions. These new studies and data are discussed in this paper and the accompanying supplement information provides detailed and transparent information to support these conclusions.


Assuntos
Atrazina/toxicidade , Herbicidas/toxicidade , Anfíbios/fisiologia , Animais , Peixes/fisiologia , Répteis/fisiologia , Poluentes Químicos da Água/toxicidade
8.
Environ Sci Technol ; 52(21): 12573-12582, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30244575

RESUMO

The organic-diffusive gradients in thin-films (o-DGT) technique has emerged as a promising aquatic passive sampler that addresses many of the challenges associated with current sampling tools used for measurement of polar organic contaminants. This study represents the first comprehensive field evaluation of the o-DGT in natural surface waters, across a wide suite of polar pharmaceuticals and pesticides. We explore the utility and limitations of o-DGT as a quantitative measurement tool compared to grab sampling and the polar organic chemical integrative sampler (POCIS) across four connected agricultural and wastewater-influenced freshwater systems spanning 600 km from the U.S. border to northern Manitoba, Canada. Overall, the suite of analytes detected with o-DGT and POCIS was similar. Concentrations in water estimated using o-DGT were greater than concentrations estimated from POCIS in 71 of 80 paired observations, and on average, the estimates from o-DGT were 2.3-fold greater than estimates from POCIS. Grab sample concentrations suggested that the systematic underestimation with POCIS were largely a result of sampling rate variation related to flow rate and boundary-layer effects, an issue reported consistently in the POCIS literature. These comprehensive measurements in an agriculturally influenced fast-flowing river, long-term sampling (>40 days) in a large dilute lake system, deployments in wastewaters, and under ice at near-freezing temperatures represent effective stress testing of o-DGT under representative and challenging conditions. Overall, its strong performance and improved accuracy over POCIS supports its use as a robust, quantitative, and sensitive measurement tool for polar organic chemicals in aquatic systems.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Canadá , Manitoba , Águas Residuárias
9.
Environ Monit Assess ; 190(1): 35, 2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29264731

RESUMO

A comprehensive evaluation of public participation in rural domestic waste (RDW) source-separated collection in China was carried out within a social-dimension framework, specifically in terms of public perception, awareness, attitude, and willingness to pay for RDW management. The evaluation was based on a case study conducted in Guilin, Guangxi Zhuang Autonomous Region, China, which is a representative of most inland areas of the country with a GDP around the national average. It was found that unlike urban residents, rural residents maintained a high rate of recycling, but in a spontaneous manner; they paid more attention to issues closely related to their daily lives, but less attention to those at the general level; their awareness of RDW source-separated collection was low and different age groups showed significantly different preferences regarding the sources of knowledge acquirement. Among potential information sources, village committees played a very important role in knowledge dissemination; for the respondents' pro-environmental attitudes, the influencing factor of "lack of legislation/policy" was considered to be significant; mandatory charges for waste collection and disposal had a high rate of acceptance among rural residents; and high monthly incomes had a positive correlation with both public pro-environmental attitudes and public willingness to pay for extra charges levied by RDW management. These observations imply that, for decision-makers in the short term, implementing mandatory RDW source-separated collection programs with enforced guidelines and economic compensation is more effective, while in the long run, promoting pro-environmental education to rural residents is more important.


Assuntos
Participação da Comunidade , Opinião Pública , População Rural , Gerenciamento de Resíduos/métodos , Atitude , China , Participação da Comunidade/economia , Tomada de Decisões , Humanos , Reciclagem/economia , Eliminação de Resíduos/economia , Gerenciamento de Resíduos/economia , Gerenciamento de Resíduos/normas
10.
Anal Chem ; 88(21): 10583-10591, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27709893

RESUMO

A unique configuration of the diffusive gradients in thin films sampler for polar organics (o-DGT) without a poly(ether sulfone) membrane was developed, calibrated, and field-evaluated. Diffusion coefficients (D) through agarose diffusive gels ranged from (1.02 to 4.74) × 10-6 cm2/s for 34 pharmaceuticals and pesticides at 5, 13, and 23 °C. Analyte-specific diffusion-temperature plots produced linear (r2 > 0.85) empirical relationships whereby D could be estimated at any environmentally relevant temperature (i.e., matched to in situ water conditions). Linear uptake for all analytes was observed in a static renewal calibration experiment over 25 days except for three macrolide antibiotics, which reached saturation at 300 ng (≈15 d). Experimental sampling rates ranged from 8.8 to 16.1 mL/d and were successfully estimated with measured and modeled D within 19% and 30% average relative error, respectively. Under slow flowing (2.4 cm/s) and static conditions, the in situ diffusive boundary layer (DBL) thickness ranged from 0.023 to 0.075 cm, resulting in a maximum contribution to mass transfer of <45%. Estimated water concentrations by o-DGT at a wastewater treatment plant agreed well with grab samples and appeared to be less influenced by the boundary layer compared to that of polar organic chemical integrative samplers (POCIS) deployed simultaneously. The o-DGT sampler is a promising monitoring tool that is largely insensitive to the DBL under typical flow conditions, facilitating the application of measured/modeled diffusion-based sampling rates. This significantly reduces the need for sampler calibration, making o-DGT more widely applicable, reliable, and cost-effective compared to current polar passive samplers.

11.
Ecotoxicol Environ Saf ; 132: 250-9, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27340884

RESUMO

The acute toxicity of herbicides to algae is commonly assessed under conditions (e.g., light intensity, water temperature, concentration of nutrients, pH) prescribed by standard test protocols. However, the observed toxicity may vary with changes in one or more of these parameters. This study examined variation in toxicity of the herbicide atrazine to a representative green algal species Raphidocelis subcapitata (formerly Pseudokirchneriella subcapitata) with changes in light intensity, water temperature, concentrations of nutrients or combinations of these three parameters. Conditions were chosen that could be representative of the intensive corn growing Midwestern region of the United States of America where atrazine is used extensively. Varying light intensity (4-58µmol/m(2)s) resulted in no observable trend in 96-h EC50 values for growth rate. EC50 values for PSII yield generally increased with decreasing light intensity but not significantly in all cases. The 96-h EC50 values for growth rate decreased with decreases in temperature (20-5°C) from standard conditions (25°C), but EC50 values for PSII yield at lower temperatures were not significantly different from standard conditions. Finally, there was no clear trend in 96-h EC50 values for both endpoints with increases in nitrogen (4.1-20mg/L) and phosphorus (0.24-1.2mg/L). The 96-h EC50 values for both endpoints under combinations of conditions mimicking aquatic systems in the Midwestern U.S. were not significantly different from EC50 values generated under standard test conditions. This combination of decreased light intensity and temperature and increased nutrients relative to standard conditions does not appear to significantly affect the observed toxicity of atrazine to R. subcapitata. For atrazine specifically, and for perhaps other herbicides, this means current laboratory protocols are useful for extrapolating to effects on algae under realistic environmental conditions.


Assuntos
Atrazina/toxicidade , Clorófitas/efeitos dos fármacos , Herbicidas/toxicidade , Luz , Temperatura , Poluentes Químicos da Água/toxicidade , Clorófitas/efeitos da radiação , Medição de Risco
12.
Ecotoxicol Environ Saf ; 118: 204-216, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25957082

RESUMO

Lotic systems in agriculturally intensive watersheds can experience short-term pulsed exposures of pesticides as a result of runoff associated with rainfall events following field applications. Of special interest are herbicides that could potentially impair communities of primary producers, such as those associated with periphyton. Therefore, this study examined agroecosystem-derived lotic periphyton to assess (1) variation in community sensitivity to, and ability to recover from, acute (48h) exposure to the photosystem II (PSII)-inhibiting herbicide atrazine across sites and time, and (2) attempt to determine the variables (e.g., community structure, hydrology, water quality measures) that were predictive for observed differences in sensitivity and recovery. Periphyton were sampled from six streams in the Midwestern U.S. on four different dates in 2012 (April to August). Field-derived periphyton were exposed in the laboratory to concentrations of atrazine ranging from 10 to 320µg/L for 48h, followed by untreated media for evaluation of recovery for 48h. Effective quantum yield of PSII was measured after 24h and 48h exposure and 24h and 48h after replacement of media. Inhibition of PSII EC50 values ranged from 53 to >320µg/L. The majority of periphyton samples (16 out of 22) exposed to atrazine up to 320µg/L recovered completely by 48h after replacement of media. Percent inhibition of effective quantum yield of PSII in periphyton (6 of 22 samples) exposed to 320µg/L atrazine that were significantly lower than controls after 48h ranged from 2% to 24%. No distinct spatial or temporal trends in sensitivity and recovery potential were observed over the course of the study. Conditional inference forest analysis and variation partitioning were used to investigate potential associations between periphyton sensitivity to and ability to recover from exposure to atrazine. Although certain environmental variables (i.e., proximity of high flow/velocity events and dissolved solutes) were significantly associated with sensitivity to atrazine, recovery was not significantly associated with any variables, which is predicted by the rapid reversible binding at PSII. Consistent and rapid recovery of effective quantum yield of PSII across sites and sampling dates indicates that acute exposure to atrazine is unlikely to adversely affect function of these communities in their current state in intensive agroecosystems.


Assuntos
Atrazina/toxicidade , Herbicidas/toxicidade , Microalgas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Biota , Meio-Oeste dos Estados Unidos , Complexo de Proteína do Fotossistema II/metabolismo , Rios/química , Estações do Ano , Análise Espacial
13.
Bull Environ Contam Toxicol ; 95(2): 150-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26067703

RESUMO

In agricultural catchments, aquatic ecosystems can experience a pulse exposure to pesticides. Following such exposure, non-target organisms that are not extirpated may recover. This paper investigates the potential of two duckweed species (Lemna minor and Lemna gibba) to recover from a 7-day exposure to different concentrations (0.4-208 µg L(-1)) of the herbicide diuron. There was significant inhibition in the growth and biomass after the initial 7-day exposure (e.g. frond number EC50=59.2 and 52.2 µg L(-1) for L. minor and L. gibba, respectively). Following transfer to clean media, recovery (the highest concentration yielding no significant difference in the effect endpoint from the control) was observed for all effects endpoints at concentrations ranging 60-111 µg L(-1) for L. minor and 60-208 µg L(-1) for L. gibba. These results suggest that recovery is possible for primary producers at environmentally relevant concentrations considered significant in ecological risk assessment.


Assuntos
Araceae/efeitos dos fármacos , Diurona/toxicidade , Herbicidas/toxicidade , Araceae/crescimento & desenvolvimento , Biomassa , Poluentes Químicos da Água
14.
Crit Rev Toxicol ; 44 Suppl 5: 1-66, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25375889

RESUMO

A quantitative weight of evidence (WoE) approach was developed to evaluate studies used for regulatory purposes, as well as those in the open literature, that report the effects of the herbicide atrazine on fish, amphibians, and reptiles. The methodology for WoE analysis incorporated a detailed assessment of the relevance of the responses observed to apical endpoints directly related to survival, growth, development, and reproduction, as well as the strength and appropriateness of the experimental methods employed. Numerical scores were assigned for strength and relevance. The means of the scores for relevance and strength were then used to summarize and weigh the evidence for atrazine contributing to ecologically significant responses in the organisms of interest. The summary was presented graphically in a two-dimensional graph which showed the distributions of all the reports for a response. Over 1290 individual responses from studies in 31 species of fish, 32 amphibians, and 8 reptiles were evaluated. Overall, the WoE showed that atrazine might affect biomarker-type responses, such as expression of genes and/or associated proteins, concentrations of hormones, and biochemical processes (e.g. induction of detoxification responses), at concentrations sometimes found in the environment. However, these effects were not translated to adverse outcomes in terms of apical endpoints. The WoE approach provided a quantitative, transparent, reproducible, and robust framework that can be used to assist the decision-making process when assessing environmental chemicals. In addition, the process allowed easy identification of uncertainty and inconsistency in observations, and thus clearly identified areas where future investigations can be best directed.


Assuntos
Atrazina/toxicidade , Exposição Ambiental/efeitos adversos , Herbicidas/toxicidade , Anfíbios/fisiologia , Animais , Biomarcadores/análise , Peixes/fisiologia , Reprodução/efeitos dos fármacos , Répteis/fisiologia , Projetos de Pesquisa
15.
Environ Sci Pollut Res Int ; 31(13): 20293-20310, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372918

RESUMO

Fresh produce is an important component of maintaining cognitive and physical health, particularly for children. A mechanism to increase access to fresh produce is the construction of community gardens in urban centres. While reducing barriers to nutritious food, the soil of the community garden can contain contaminants (e.g. metals) depending on the location and how the garden was constructed. This study quantified, for the first time, seven metals (As, Cd, Cr, Cu, Pb, Mn, and Ni) in soil from 83 community gardens across the City of Winnipeg in Manitoba, Canada. Concentrations of metals in soil were used to create distributions for environmental exposure and estimated daily intake, which were then used to determine exceedances of soil quality guidelines and acceptable daily intakes, respectively. Raised garden beds and gardens further from roads had typically lower concentrations of metals in surface gardens and those nearer to roads. While some concentrations of metals exceeded CCME guidelines levels for the protection of environmental health, the vast majority represent a low risk. For human health, only As posed a quantifiable risk of exceeding the USEPA acceptable daily intake via the consumption of produce from gardens, though this was < 1.2% for the whole population and < 10.2% for children aged 1 to 2 years. Overall, this study is the first to show that the concentration of the metals in soil from gardens typically poses a low risk to environmental and human health. We recommend the use of raised gardens to further mitigate risk.


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Humanos , Jardins , Manitoba , Monitoramento Ambiental , Poluentes do Solo/análise , Metais/análise , Canadá , Medição de Risco , Solo , Metais Pesados/análise
16.
Ecotoxicology ; 22(9): 1367-83, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24043588

RESUMO

Periphyton communities are an integral component of freshwater ecosystems and the desire to include data from toxicity testing with these organisms for ecological risk assessment is growing. This study developed sampling, storage, and exposure methods for the consistent and effective characterization of acute response and recovery of field-derived periphyton to photosystem II (PSII) inhibiting herbicides, particularly atrazine. Pulse amplitude modulated fluorometry was used to assess PSII quantum yield. For the method development phase, periphyton samples were collected from lotic and lentic systems in the Guelph, Ontario, Canada area during the summer of 2011. Following method development, native periphyton communities from three agricultural streams from the midwestern U.S. were sampled and exposed to atrazine (10-320 µg/L) and assessed for inhibition of PSII quantum yield (from 2 up to 24 h) and subsequent recovery upon cessation of exposure (up to 48 h post-exposure). Sensitivity to atrazine (EC10 and EC50 values) varied slightly (typically less than twofold difference) by site, date of sampling, and exposure interval. Only the highest initial test concentrations (160 or 320 µg/L) demonstrated greater than ~5% inhibition at 48 h post-exposure; however all other test concentrations recovered to within 5% of control levels, typically within 24 h. The rapid physiological recovery of periphyton communities upon atrazine removal supports the conclusion that acute exposure will not likely result in significant or sustained impacts on either structure or function of periphyton in lotic ecosystems. For ecological risk assessment, this suggests the current approach of relying on direct effects data for the most sensitive single species alone may result in overly conservative estimates of potential effects, especially for complex communities of primary producers.


Assuntos
Atrazina/toxicidade , Herbicidas/toxicidade , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Fitoplâncton/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Meio-Oeste dos Estados Unidos , Rios
17.
Aquat Toxicol ; 255: 106391, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36641886

RESUMO

Standardized oil toxicity testing is important to ensure comparability of study results, and to generate information to support oil spill planning, response, and environmental assessments. Outcomes from toxicity tests are useful in the development, improvement and validation of effects models, and new or revised knowledge could be integrated into existing databases and related tools. To foster transparency, facilitate repeatability and maximize use and impact, outcomes from toxicity tests need to be clearly reported and communicated. This work is part of a series of reviews to support the modernization of the "Chemical Response to Oil Spills: Ecological Effects Research Forum" protocols focusing on technological advances and best toxicity testing practices. Thus, the primary motivation of the present work is to provide guidance and encourage detailed documentation of aquatic toxicity studies. Specific recommendations are provided regarding key reporting elements (i.e., experimental design, test substance and properties, test species and response endpoints, media preparation, exposure conditions, chemical characterization, reporting metric corresponding to the response endpoint, data quality standards, and statistical methods, and raw data), which along with a proposed checklist can be used to assess the completeness of reporting elements or to guide study conduct. When preparing journal publications, authors are encouraged to take advantage of the Supplementary Material section to enhance dissemination and access to key data and information that can be used by multiple end-users, including decision-makers, scientific support staff and modelers. Improving reporting, science communication, and access to critical information enable users to assess the reliability and relevance of study outcomes and increase incorporation of results gleaned from toxicity testing into tools and applications that support oil spill response decisions. Furthermore, improved reporting could be beneficial for audiences outside the oil spill response community, including peer reviewers, journal editors, aquatic toxicologists, researchers in other disciplines, and the public.


Assuntos
Poluição por Petróleo , Poluentes Químicos da Água , Humanos , Reprodutibilidade dos Testes , Poluentes Químicos da Água/toxicidade , Testes de Toxicidade , Comunicação
18.
Chemosphere ; 329: 138608, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37028727

RESUMO

Following an oil spill into water, bacteria can biodegrade petroleum hydrocarbons which could lead to petrogenic carbon assimilation by aquatic biota. We used changes in the isotope ratios of radio- (Δ14C) and stable (δ13C) carbon to examine the potential for assimilation of petrogenic carbon into a freshwater food web following experimental spills of diluted bitumen (dilbit) into a boreal lake in northwestern Ontario, Canada. Different volumes (1.5, 2.9, 5.5, 18, 42, 82, and 180 L) of Cold Lake Winter Blend (a heavy crude blend of bitumen and condensate) dilbit were applied to seven 10-m diameter littoral limnocorrals (approximate volume of 100 m3), and two additional limnocorrals had no added dilbit to serve as controls. Particulate organic matter (POM) and periphyton from oil-treated limnocorrals had lower δ13C (up to 3.2‰ and 2.1‰ for POM and periphyton, respectively) than the control at every sampled interval (3, 6 and 10 weeks for POM and 6, 8 and 10 weeks for periphyton). Dissolved organic and inorganic carbon (DOC and DIC, respectively) had lower Δ14C in the oil-treated limnocorrals relative to the control (up to 122‰ and 440‰ lower, respectively). Giant floater mussel (Pyganodon grandis) housed for 25 days in aquaria containing oil-contaminated water from the limnocorrals did not show significant changes in δ13C values of muscle tissue compared to mussels housed in control water. Overall, the changes in δ13C and Δ14C observed indicated small amounts (up to 11% in DIC) of oil carbon incorporation into the food web. The combined δ13C and Δ14C data provide evidence for minimal incorporation of dilbit into the food web of this oligotrophic lake, suggesting that microbial degradation and subsequent incorporation of oil C into the food web may play a relatively small role in the ultimate fate of oil in this type of ecosystem.


Assuntos
Carbono , Cadeia Alimentar , Hidrocarbonetos , Poluentes Químicos da Água , Isótopos de Carbono/análise , Ecossistema , Lagos , Ontário , Água , Poluentes Químicos da Água/análise
19.
Environ Toxicol Chem ; 41(1): 46-72, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758147

RESUMO

There is a pressing need to understand the impact of contaminants on Arctic ecosystems; however, most toxicity tests are based on temperate species, and there are issues with reliability and relevance of bioassays in general. Together this may result in an underestimation of harm to Arctic organisms and contribute to significant uncertainty in risk assessments. To help address these concerns, a critical review to assess reported effects for these species, quantify methodological and endpoint relevance gaps, and identify future research needs for testing was performed. We developed uniform criteria to score each study, allowing an objective comparison across experiments to quantify their reliability and relevance. We scored a total of 48 individual studies, capturing 39 tested compounds, 73 unique Arctic test species, and 95 distinct endpoints published from 1975 to 2021. Our analysis shows that of 253 test substance and species combinations scored (i.e., a unique toxicity test), 207 (82%) failed to meet at least one critical study criterion that contributes to data reliability for use in risk assessment. Arctic-focused toxicity testing needs to ensure that exposures can be analytically confirmed, include environmentally realistic exposure scenarios, and report test methods more thoroughly. Significant data gaps were identified as related to standardized toxicity testing with Arctic species, diversity of compounds tested with these organisms, and the inclusion of ecologically relevant sublethal and chronic endpoints assessed in Arctic toxicity testing. Overall, there needs to be ongoing improvement in test conduction and reporting in the scientific literature to support effective risk assessments in an Arctic context. Environ Toxicol Chem 2022;41:46-72. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ecossistema , Poluentes Químicos da Água , Ecotoxicologia , Reprodutibilidade dos Testes , Medição de Risco , Testes de Toxicidade/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
20.
Aquat Toxicol ; 245: 106128, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35255276

RESUMO

The risks to aquatic wildlife from spills of diluted bitumen (dilbit) into inland waters are poorly understood. In this paper, we describe the response of larval wood frogs (Rana sylvatica) to hydrocarbons and other compounds released from experimental spills of dilbit in a temperate boreal lake. To simulate a wide range of environmentally relevant oil spill scenarios, different volumes of Cold Lake Winter Blend dilbit (0, 1.5, 2.9, 5.5, 18, 42, 82, and 180 L) were added to 10 m diameter in-lake limnocorrals. Larvae (n = 360) were reared (from Gosner Stage (GS) 25 to ∼42) in land-based aquatic microcosms, where they were first exposed to clean water during a 2-week baseline phase, and then (at GS ∼30), to contaminated water withdrawn from the limnocorrals for 3 weeks. We observed no statistically significant trends in survival, growth, or development of larvae as a consequence of exposure to the chemical compounds released from naturally weathered dilbit. Likewise, neither cytochrome P450 1A biomarkers nor levels of thyroid hormones in wood frogs near metamorphic climax were significantly related to volume of the oil spills. However, there was a modest statistically significant decrease in larval activity (up to 8.7% relative to the control), but no change in other behavioral metrics (i.e., sociality or space use). Our work adds to the limited body of literature on the effects of unconventional oils on aquatic wildlife and helps to inform risk assessments regarding pipeline projects.


Assuntos
Lagos , Poluentes Químicos da Água , Animais , Hidrocarbonetos , Lagos/química , Larva , Ranidae , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA