Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Environ Res ; 178: 108723, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31539822

RESUMO

In California, the metamorphic blueschist occurrences within the Franciscan Complex are commonly composed of glaucophane, which can be found with a fibrous habit. Fibrous glaucophane's potential toxicity/pathogenicity has never been determined and it has not been considered by the International Agency for Research on Cancer (IARC) as a potential carcinogen to date. Notwithstanding, outcrops hosting fibrous glaucophane are being excavated today in California for building/construction purposes (see for example the Calaveras Dam Replacement Project - CDRP). Dust generated by these excavation activities may expose workforces and the general population to this potential natural hazard. In this work, the potential toxicity/pathogenicity of fibrous glaucophane has been determined using the fibre potential toxicity index (FPTI). This model has been applied to a representative glaucophane-rich sample collected at San Anselmo, Marin County (CA, USA), characterized using a suite of experimental techniques to determine morphometric, crystal-chemical parameters, surface reactivity, biodurability and related parameters. With respect to the asbestos minerals, the FPTI of fibrous glaucophane is remarkably higher than that of chrysotile, and comparable to that of tremolite, thus supporting the application of the precautionary approach when excavating fibrous glaucophane-rich blueschist rocks. Because fibrous glaucophane can be considered a potential health hazard, just like amphibole asbestos, it should be taken into consideration in the standard procedures for the identification and assessment of minerals fibres in soil and air samples.


Assuntos
Amiantos Anfibólicos/toxicidade , Fibras Minerais/toxicidade , Amianto , Asbestos Serpentinas , California , Humanos , Testes de Toxicidade , Virulência
2.
Drug Dev Ind Pharm ; 43(3): 465-473, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27885848

RESUMO

CONTEXT: LR-peptide, a novel hydrophilic peptide synthetized and characterized in previous work, is able to reduce the multi-drug resistance response in cisplatin (cDPP) resistant cancer cells by inhibiting human thymidylate synthase (hTS) overexpressed in several tumors, including ovarian and colon-rectal cancers, but it is unable to enter the cells spontaneously. OBJECTIVE: The aim of this work was to design and characterize liposomal vesicles as drug delivery systems for the LR peptide, evaluating the possible benefits of the pH-responsive feature in improving intracellular delivery. MATERIALS AND METHODS: For this purpose, conventional and pH-sensitive liposomes were formulated, compared regarding their physical-chemical properties (size, PDI, morphology, in vitro stability and drug release) and studied for in vitro cytotoxicity against a cDDP-resistant cancer cells. RESULTS AND DISCUSSION: Results indicated that LR peptide was successfully encapsulated in both liposomal formulations but at short incubation time only LR loaded pH-sensitive liposomes showed cell inhibition activity while for long incubation time the two kinds of liposomes demonstrated the same efficacy. CONCLUSIONS: Data provide evidence that acidic pH-triggered liposomal delivery is able to significantly reduce the time required by the systems to deliver the drug to the cells without inducing an enhancement of the efficacy of the drug.


Assuntos
Cisplatino/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Timidilato Sintase/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cisplatino/metabolismo , Relação Dose-Resposta a Droga , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Lipossomos , Timidilato Sintase/metabolismo , Resultado do Tratamento
3.
Chemosphere ; 291(Pt 3): 133067, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34838598

RESUMO

This study explored the morphological, mineralogical, and physico-chemical features of carcinogenic erionite and other possibly hazardous zeolites, such as mesolite and thomsonite, while also investigating the interacting capability of the mineral surface at the liquid/solid interface. Extremely fibrous erionite is K+ and Ca2+-rich and shows the highest Si/Al ratio (3.38) and specific surface area (8.14 m2/g). Fibrous mesolite is Na+ and Ca2+-rich and displays both a lower Si/Al ratio (1.56) and a smaller specific surface area (1.56 m2/g). The thomsonite composition shows the lowest values of Si/Al ratio (1.23) and specific surface area (0.38 m2/g). Electron paramagnetic resonance data from selected spin probes reveal that erionite has a homogeneous site distribution and interacts well with all spin probes. The surfaces of mesolite and thomsonite are less homogeneous and closer polar sites were found through consequent interaction with the probes. The mesolite surface can also clearly interact but with a lower strength and may represent a potential health hazard for humans, though with a lower degree if compared to erionite. The thomsonite surface is not inert and interacts with the probes with a low-grade capability. We can expect small fragments of thomsonite to interact with the biological environment, though with a low-grade intensity.


Assuntos
Zeolitas , Carcinógenos , Espectroscopia de Ressonância de Spin Eletrônica , Humanos
4.
Eur J Pharm Biopharm ; 144: 91-100, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31521715

RESUMO

We have previously demonstrated that the ester conjugation of zidovudine (AZT) with ursodeoxycholic acid (UDCA) allows to obtain a prodrug (U-AZT) which eludes the active efflux transporters (AET). This allows the prodrug to more efficiently permeates and remains in murine macrophages than the parent compound. Here we demonstrate that U-AZT can be formulated, by a nanoprecipitation method, as nanoparticle cores coated by bile acid salt (taurocholate or ursodeoxycholate) corona, without any other excipients. The U-AZT nanoparticles appeared spherical with a mean diameter of ∼200 nm and a zeta potential of ∼-55 mV. During the incubation (5 h) in fetal bovine serum, the ursodeoxycholate-coated nanoparticle size did not change. Differently, taurocholate-coated particle size was firstly reduced and then increased up to 800 µm, thus suggesting the high aptitude of these nanoparticles to interact with serum proteins. The in vitro uptake of taurocholate coated particles by murine macrophages was strongly higher than that of ursodeoxycholate-coated particles or free U-AZT (∼500% and ∼7000%, respectively). AZT was also detected in macrophages following the prodrug uptake, with the greatest amounts observed after the taurocholate-coated nanoparticle incubation. As macrophages in the subarachnoid spaces of cerebrospinal fluid (CSF) constitute one of the most unreachable HIV sanctuaries in the body, we also tested the ability of taurocholate-coated nanoparticles (i.e., nanoparticles highly internalized by macrophages) to reach them after their nasal administration in the presence or absence of chitosan. The results indicate that chitosan allowed to obtain a relatively high uptake (up to 4 µg/ml) of U-AZT in CSF. Taking into account that chitosan may promote the direct brain nanoparticle uptake, these findings can be considered an initial step toward the in vivo targeting of the subarachnoid macrophages by U-AZT prodrug.


Assuntos
Ácidos e Sais Biliares/química , Encéfalo/metabolismo , Macrófagos/efeitos dos fármacos , Nanopartículas/química , Mucosa Nasal/metabolismo , Pró-Fármacos/farmacologia , Zidovudina/farmacologia , Administração Intranasal , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Linhagem Celular , Quitosana/química , Portadores de Fármacos/química , Excipientes/química , Camundongos , Nariz , Tamanho da Partícula , Ácido Ursodesoxicólico/química
5.
Colloids Surf B Biointerfaces ; 136: 346-54, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26433347

RESUMO

Recently, octapeptide LSCQLYQR (LRp), reducing growth of cis-platinum (cDDP) resistant ovarian carcinoma cells by inhibiting the monomer-monomer interface of the human enzyme thymidylate synthase, has been identified. As the peptide is not able to cross the cell membrane it requires an appropriate delivery system. In this work the application of SLNs, biocompatible and efficient tools for the intracellular drug transport, applied especially for lipophilic drugs, was exploited for the delivery of the hydrophilic peptide LRp. SLNs formulated in the absence/presence of small amount of squalene showed dimensions below 150 nm, negative zeta potential and good stability to the freeze-drying process. Even though the particles formulated with squalene exhibited a less ordered crystal lattice and a lower surface hydrophobicity, a rapid drug release from these nanocarriers occurred as a result of the relevant expulsion of the drug from the lipid core during lipid crystallization. On the contrary, SLNs formulated in the absence of squalene were able to incorporate more stably the peptide showing considerable cytotoxic effect on cDDP resistant C13* ovarian carcinoma cell line at concentration 50 times lower than that used previously with a marketed delivery system. From the cell cycle analysis by the propidium iodide test in SLNs-peptide treated cancer cells an increase of apoptosis percentage was observed, indicating that SLNs were able to carry efficiently the peptide until its enzymatic target.


Assuntos
Proliferação de Células/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/farmacologia , Lipídeos/administração & dosagem , Nanopartículas , Timidilato Sintase/antagonistas & inibidores , Linhagem Celular Tumoral , Inibidores Enzimáticos/administração & dosagem , Humanos
6.
J Hazard Mater ; 276: 469-79, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24929786

RESUMO

For the first time, the zeta (ξ) potential of pathogenic mineral fibres (chrysotiles, amphiboles and erionite) was systematically investigated to shed light on the relationship between surface reactivity and fibre pathogenicity. A general model explaining the zeta potential of chrysotile, amphiboles and erionite has been postulated. In double distilled water, chrysotiles showed positive values while crocidolite and erionite showed negative values. In contact with organic solutions, all fibres exhibited negative values of zeta potential. The decrease of the surface potential is deemed to be a defensive chemical response of the macrophage cells to minimize hemolytic damage. Negatively charged surfaces favour the binding of collagen and redox activated Fe-rich proteins, to form the so-called asbestos bodies and prompt the formation of HO via the reaction with peroxide (H2O2+e(-)→HO+HO(-)). An additional mechanism accounting for higher carcinogenicity is possibly related to the Ca(2+) sequestration by the fibres with surface negative potential, impairing the mitochondrial apoptotic pathway. It was also found that with a negative zeta potential, the attractive forces prevailed over repulsions and favoured processes such as agglomeration responsible of a tumorigenic chronic inflammation.


Assuntos
Silicatos de Magnésio/química , Microscopia Eletrônica de Varredura
7.
Drug Deliv ; 21(3): 221-32, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24134683

RESUMO

CONTEXT: Zidovudine (AZT) is employed against AIDS and hepatitis; its use is limited by active efflux transporters (AETs) that induce multidrug resistance for intracellular therapies and hamper AZT to reach the brain. Ursodeoxycholic acid (UDCA) conjugation with AZT (prodrug UDCA-AZT) allows to elude the AET systems. OBJECTIVE: To investigate the effect of the Pluronic F68 coating on the loading, release and stability of poly(D,L lactide-co-glicolide) nanoparticles (NPs) embedded with UDCA-AZT. MATERIALS AND METHODS: The mean diameter of the NP prepared by nanoprecipitation or emulsion/solvent evaporation methods was determined using both photon correlation spectroscopy and sedimentation field-flow fractionation; particle morphology was detected by scanning electron microscope. The stability of the free and encapsulated UDCA-AZT was evaluated in rat liver homogenates by high-performance liquid chromatography analysis. RESULTS AND DISCUSSION: The mean diameter of the NPs was found to be ∼ 600 nm with a relatively high polydispersity. The NPs obtained by emulsion/solvent evaporation were not able to control the prodrug release, differently from NPs obtained by nanoprecipitation. The presence of the Pluronic coating did not substantially modify the kinetics of the drug release, or the extent of the burst effect that were instead only influenced by the preparation parameters. UDCA-AZT incorporated in the NPs was more stable in the rat liver homogenates than the free prodrug and no influence of the Pluronic coating was observed. CONCLUSIONS: Considering the different potential applications of nanoparticles coated and uncoated with Pluronic (brain and macrophage targeting, respectively), both of these nanoparticle systems could be useful in the therapies against HIV.


Assuntos
Portadores de Fármacos , Ácido Láctico/química , Nanopartículas , Ácido Poliglicólico/química , Pró-Fármacos/química , Inibidores da Transcriptase Reversa/química , Ácido Ursodesoxicólico/química , Zidovudina/química , Animais , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Estabilidade de Medicamentos , Hidrólise , Cinética , Fígado/metabolismo , Masculino , Microscopia Eletrônica de Varredura , Nanotecnologia , Tamanho da Partícula , Poloxâmero/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Wistar , Inibidores da Transcriptase Reversa/metabolismo , Solubilidade , Propriedades de Superfície , Tecnologia Farmacêutica/métodos , Ácido Ursodesoxicólico/análogos & derivados , Ácido Ursodesoxicólico/metabolismo , Zidovudina/análogos & derivados , Zidovudina/metabolismo
8.
Int J Pharm ; 462(1-2): 74-82, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24374224

RESUMO

The goal of the work was to evaluate an anti-tubercular strategy based on breathable Solid Lipid Microparticles (SLM) to target alveolar macrophages and to increase the effectiveness of the conventional tuberculosis (TB) therapy. Rifampicin loaded SLM composed of stearic acid and sodium taurocholate were characterized for aerodynamic diameter, surface charge, physical state of the components, drug loading and release as well as drug biological activity on Bacillus subtilis strain. Moreover, SLM cytotoxicity and cell internalization ability were evaluated on murine macrophages J774 cell lines by MTT test, cytofluorimetry and confocal laser microscopy. SLM exhibited aerodynamic diameter proper to be transported up to the alveolar epithelium, negative charged surface able to promote uptake by the macrophages and preserved drug antimicrobial activity. The negligible in vitro release of rifampicin indicated the capacity of the microparticle matrix to entrap the drug preventing its spreading over the lung fluid. In vitro studies on J774 cell lines demonstrated SLM non-cytotoxicity and ability to be taken up by cell cytoplasm. The microparticulate carrier, showing features suitable for the inhaled therapy and for inducing endocytosis by alveolar macrophages, could be considered promising in a perspective of an efficacious TB inhaled therapy by means of a Dry Powder Inhaler device.


Assuntos
Antituberculosos/administração & dosagem , Macrófagos Alveolares/metabolismo , Rifampina/administração & dosagem , Tuberculose/tratamento farmacológico , Administração por Inalação , Animais , Antituberculosos/farmacocinética , Antituberculosos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Linhagem Celular , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Inaladores de Pó Seco , Citometria de Fluxo , Lipídeos/química , Macrófagos Alveolares/microbiologia , Camundongos , Microscopia Confocal , Microesferas , Tamanho da Partícula , Rifampina/farmacocinética , Rifampina/farmacologia , Ácidos Esteáricos/química , Ácido Taurocólico/química
9.
Int J Pharm ; 440(2): 161-9, 2013 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22982257

RESUMO

Several advanced in vitro and in vivo studies have proved the broad potential of cationic solid lipid nanoparticles (SLN) as nonviral vectors. However, a few data are available about the correlation between lipid component of the SLN structure and in vitro performance in terms of cell tolerance and transfection efficiency on different cell lines. In this paper SLN were prepared using stearic acid as main lipid component, stearylamine as cationic agent and protamine as transfection promoter and adding phosphatidylcholine (PC), cholesterol (Chol) or both to obtain three different multicomponent SLN (SLN-PC, SLN-Chol and SLN-PC-Chol, respectively). Cytotoxicity and transfection efficiency of the obtained SLN:pDNA complexes were evaluated on three different immortalized cell lines: COS-I (African green monkey kidney cell line), HepG2 (human hepatocellular liver carcinoma cell line) and Na1300 (murine neuroblastoma cell line). Samples were characterized for the exact quantitative composition, particle size, morphology, zeta potential and pDNA binding ability. All the three SLN samples were about 250-300 nm in size with a positive zeta potential, whereas SLN:pDNA complexes were about 300-400 nm in size with a less positive zeta potential, depending on the SLN composition. Concerning the cell tolerance, the three samples showed a level of cytotoxicity lower than that of the positive control polyethylenimine (PEI), regardless of the cell lines. The best transfection performance was observed for SLN-PC-Chol on COS-I cells while a transfection level lower than PEI was observed on HepG2 cells, regardless the SLN composition. On Na1300 cells, SLN-Chol showed a double efficiency with respect to PEI. Comparing these results to those obtained with the same kind of SLN without PC and/or Chol, it is possible to conclude that the addition of Chol and/or PC to the composition of cationic SLN modify the cell tolerance and the transfection efficiency of the gene vector in a manner strictly dependent on the cell type and the internalization pathways.


Assuntos
Cátions/química , Vetores Genéticos/química , Lipídeos/química , Nanopartículas/química , Transfecção/métodos , Animais , Células COS , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Chlorocebus aethiops , DNA/química , Vetores Genéticos/toxicidade , Células Hep G2 , Humanos , Lipídeos/toxicidade , Camundongos , Nanopartículas/toxicidade , Tamanho da Partícula , Propriedades de Superfície
10.
Ther Deliv ; 2(11): 1419-35, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22826874

RESUMO

BACKGROUND: The ability to efficiently cross cellular barriers and accomplish high-level transgene expression is a critical challenge to broad application of nonviral vectors, such as cationic solid lipid nanoparticles (SLN). AIMS: This study aims to design and characterize in vitro multicomposite SLN as a novel platform for pDNA delivery. RESULTS/DISCUSSION: The distribution of each component (stearic acid, stearylamine, phosphatidylcholine, cholesterol, protamine and Pluronic F68) in the SLN matrix was studied by electron spectroscopy for chemical analysis and NMR in order to establish its influence on SLN cytotoxicity and transfection efficiency. Multicomposite SLN mediated the expression of enhanced green fluorescent protein in a way comparable with the positive control, but inducing a lower cytotoxicity. Moreover, the carrier exhibited the ability to enter the nucleoli, probably as a result of the synergic action of the nuclear localization signal of protamine and the flexibility of the lipid matrix owing to the phosphatidylcholine. CONCLUSION: The multicomposite SLN showed good transfection efficiency and negligible cytotoxicity, both crucial factors for an efficient gene-delivery system. Considering the fact that nucleoli have emerged in recent years as important targets in many fields, this novel carrier could have significant future therapy involvements whenever there is a requirement to overcome subcellular barriers. However, further work needs to be carried out in order to fully characterize the formulation, to elucidate where alternative colloidal structures might exist and play a role in obtaining the results presented.


Assuntos
DNA/administração & dosagem , Lipídeos/química , Nanopartículas , Transfecção , Animais , Células COS , Cátions , Nucléolo Celular/metabolismo , Chlorocebus aethiops , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/genética , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia Fotoeletrônica/métodos , Plasmídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA