Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
IEEE Comput Graph Appl ; 39(1): 26-43, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30869596

RESUMO

The visualization toolkit (VTK) is a popular cross-platform, open source toolkit for scientific and medical data visualization, processing, and analysis. It supports a wide variety of data formats, algorithms, and rendering techniques for both polygonal and volumetric data. In particular, VTK's volume rendering module has long provided a comprehensive set of features such as plane clipping, color and opacity transfer functions, lighting, and other controls needed for visualization. However, due to VTK's legacy OpenGL backend and its reliance on a deprecated API, the system did not take advantage of the latest improvements in graphics hardware or the flexibility of a programmable pipeline. Additionally, this dependence on an antiquated pipeline posed restrictions when running on emerging computing platforms, thereby limiting its overall applicability. In response to these shortcomings, the VTK community developed a new and improved volume rendering module, which not only provides a modern graphics processing unit-based implementation, but also augments its capabilities with new features such as fast volume clipping, gradient-magnitude-based opacity modulation, render to texture, and hardware-based volume picking.


Assuntos
Diagnóstico por Imagem , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Software , Algoritmos , Gráficos por Computador , Humanos , Dente/diagnóstico por imagem , Tronco/diagnóstico por imagem
2.
J Cheminform ; 9(1): 55, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29086154

RESUMO

An end-to-end platform for chemical science research has been developed that integrates data from computational and experimental approaches through a modern web-based interface. The platform offers an interactive visualization and analytics environment that functions well on mobile, laptop and desktop devices. It offers pragmatic solutions to ensure that large and complex data sets are more accessible. Existing desktop applications/frameworks were extended to integrate with high-performance computing resources, and offer command-line tools to automate interaction-connecting distributed teams to this software platform on their own terms. The platform was developed openly, and all source code hosted on the GitHub platform with automated deployment possible using Ansible coupled with standard Ubuntu-based machine images deployed to cloud machines. The platform is designed to enable teams to reap the benefits of the connected web-going beyond what conventional search and analytics platforms offer in this area. It also has the goal of offering federated instances, that can be customized to the sites/research performed. Data gets stored using JSON, extending upon previous approaches using XML, building structures that support computational chemistry calculations. These structures were developed to make it easy to process data across different languages, and send data to a JavaScript-based web client.

3.
J Cheminform ; 5(1): 25, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23705910

RESUMO

BACKGROUND: Multidisciplinary integrated research requires the ability to couple the diverse sets of data obtained from a range of complex experiments and computer simulations. Integrating data requires semantically rich information. In this paper an end-to-end use of semantically rich data in computational chemistry is demonstrated utilizing the Chemical Markup Language (CML) framework. Semantically rich data is generated by the NWChem computational chemistry software with the FoX library and utilized by the Avogadro molecular editor for analysis and visualization. RESULTS: The NWChem computational chemistry software has been modified and coupled to the FoX library to write CML compliant XML data files. The FoX library was expanded to represent the lexical input files and molecular orbitals used by the computational chemistry software. Draft dictionary entries and a format for molecular orbitals within CML CompChem were developed. The Avogadro application was extended to read in CML data, and display molecular geometry and electronic structure in the GUI allowing for an end-to-end solution where Avogadro can create input structures, generate input files, NWChem can run the calculation and Avogadro can then read in and analyse the CML output produced. The developments outlined in this paper will be made available in future releases of NWChem, FoX, and Avogadro. CONCLUSIONS: The production of CML compliant XML files for computational chemistry software such as NWChem can be accomplished relatively easily using the FoX library. The CML data can be read in by a newly developed reader in Avogadro and analysed or visualized in various ways. A community-based effort is needed to further develop the CML CompChem convention and dictionary. This will enable the long-term goal of allowing a researcher to run simple "Google-style" searches of chemistry and physics and have the results of computational calculations returned in a comprehensible form alongside articles from the published literature.

4.
J Cheminform ; 4(1): 17, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-22889332

RESUMO

BACKGROUND: The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible, high quality rendering, and a powerful plugin architecture. Typical uses include building molecular structures, formatting input files, and analyzing output of a wide variety of computational chemistry packages. By using the CML file format as its native document type, Avogadro seeks to enhance the semantic accessibility of chemical data types. RESULTS: The work presented here details the Avogadro library, which is a framework providing a code library and application programming interface (API) with three-dimensional visualization capabilities; and has direct applications to research and education in the fields of chemistry, physics, materials science, and biology. The Avogadro application provides a rich graphical interface using dynamically loaded plugins through the library itself. The application and library can each be extended by implementing a plugin module in C++ or Python to explore different visualization techniques, build/manipulate molecular structures, and interact with other programs. We describe some example extensions, one which uses a genetic algorithm to find stable crystal structures, and one which interfaces with the PackMol program to create packed, solvated structures for molecular dynamics simulations. The 1.0 release series of Avogadro is the main focus of the results discussed here. CONCLUSIONS: Avogadro offers a semantic chemical builder and platform for visualization and analysis. For users, it offers an easy-to-use builder, integrated support for downloading from common databases such as PubChem and the Protein Data Bank, extracting chemical data from a wide variety of formats, including computational chemistry output, and native, semantic support for the CML file format. For developers, it can be easily extended via a powerful plugin mechanism to support new features in organic chemistry, inorganic complexes, drug design, materials, biomolecules, and simulations. Avogadro is freely available under an open-source license from http://avogadro.openmolecules.net.

5.
J Cheminform ; 3: 38, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21999363

RESUMO

Computational Quantum Chemistry has developed into a powerful, efficient, reliable and increasingly routine tool for exploring the structure and properties of small to medium sized molecules. Many thousands of calculations are performed every day, some offering results which approach experimental accuracy. However, in contrast to other disciplines, such as crystallography, or bioinformatics, where standard formats and well-known, unified databases exist, this QC data is generally destined to remain locally held in files which are not designed to be machine-readable. Only a very small subset of these results will become accessible to the wider community through publication.In this paper we describe how the Quixote Project is developing the infrastructure required to convert output from a number of different molecular quantum chemistry packages to a common semantically rich, machine-readable format and to build respositories of QC results. Such an infrastructure offers benefits at many levels. The standardised representation of the results will facilitate software interoperability, for example making it easier for analysis tools to take data from different QC packages, and will also help with archival and deposition of results. The repository infrastructure, which is lightweight and built using Open software components, can be implemented at individual researcher, project, organisation or community level, offering the exciting possibility that in future many of these QC results can be made publically available, to be searched and interpreted just as crystallography and bioinformatics results are today.Although we believe that quantum chemists will appreciate the contribution the Quixote infrastructure can make to the organisation and and exchange of their results, we anticipate that greater rewards will come from enabling their results to be consumed by a wider community. As the respositories grow they will become a valuable source of chemical data for use by other disciplines in both research and education.The Quixote project is unconventional in that the infrastructure is being implemented in advance of a full definition of the data model which will eventually underpin it. We believe that a working system which offers real value to researchers based on tools and shared, searchable repositories will encourage early participation from a broader community, including both producers and consumers of data. In the early stages, searching and indexing can be performed on the chemical subject of the calculations, and well defined calculation meta-data. The process of defining more specific quantum chemical definitions, adding them to dictionaries and extracting them consistently from the results of the various software packages can then proceed in an incremental manner, adding additional value at each stage.Not only will these results help to change the data management model in the field of Quantum Chemistry, but the methodology can be applied to other pressing problems related to data in computational and experimental science.

6.
J Cheminform ; 3(1): 37, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21999342

RESUMO

BACKGROUND: The Blue Obelisk movement was established in 2005 as a response to the lack of Open Data, Open Standards and Open Source (ODOSOS) in chemistry. It aims to make it easier to carry out chemistry research by promoting interoperability between chemistry software, encouraging cooperation between Open Source developers, and developing community resources and Open Standards. RESULTS: This contribution looks back on the work carried out by the Blue Obelisk in the past 5 years and surveys progress and remaining challenges in the areas of Open Data, Open Standards, and Open Source in chemistry. CONCLUSIONS: We show that the Blue Obelisk has been very successful in bringing together researchers and developers with common interests in ODOSOS, leading to development of many useful resources freely available to the chemistry community.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA