Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(5): 2282-2298, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35106913

RESUMO

In lake ecosystems, changes in eukaryotic and prokaryotic microbes and the concentration and availability of dissolved organic matter (DOM) produced within or supplied to the system by allochthonous sources are components that characterize complex processes in the microbial loop. We address seasonal changes of microbial communities and DOM in the largest Croatian lake, Vrana. This shallow lake is connected to the Adriatic Sea and is impacted by agricultural activity. Microbial community and DOM structure were driven by several environmental stressors, including drought, seawater intrusion and heavy precipitation events. Bacterial composition of different lifestyles (free-living and particle-associated) differed and only a part of the particle-associated bacteria correlated with microbial eukaryotes. Oscillations of cyanobacterial relative abundance along with chlorophyll a revealed a high primary production season characterized by increased levels of autochthonous DOM that promoted bacterial processes of organic matter degradation. From our results, we infer that in coastal freshwater lakes dependent on precipitation-evaporation balance, prolonged dry season coupled with heavy irrigation impact microbial communities at different trophic levels even if salinity increases only slightly and allochthonous DOM inputs decrease. These pressures, if applied more frequently or at higher concentrations, could have the potential to overturn the trophic state of the lake.


Assuntos
Lagos , Microbiota , Bactérias/genética , Clorofila A , Matéria Orgânica Dissolvida , Lagos/microbiologia , Estações do Ano
2.
Plants (Basel) ; 13(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39204688

RESUMO

Phytoplankton is a polyphyletic group of organisms that responds rapidly to environmental conditions and provides a reliable response to changes, making it a good ecological indicator for water quality monitoring. However, a gradient is almost essential for a reliable relationship between pressure and impact. In a low-gradient environment, ingenuity is required to outsmart the limitations of the commonly used linear relationship. Here, we examine changes in biomass and functional biodiversity by analysing larger data sets (2013-2022) in six ecologically diverse, natural, deep Croatian karst lakes with low nutrient gradients using nonlinear correlation coefficients and multivariate analyses in 209 samples. We found that phytoplankton biomass was most strongly influenced by nutrients, salinity and alkalinity, while light availability and total nitrogen strongly influenced phytoplankton functional biodiversity. An additional analysis of the TN:TP ratio revealed that the oligotrophic Lake Vransko is nitrogen-limited, and lakes Kozjak and Prosce are phosphorus-limited. This further clarified the relationship of phytoplankton to nutrients despite the low gradient. The complex analysis in this study provides a new perspective for predicting changes in the structure and succession of phytoplankton in deep karst lakes for successful management under apparent anthropogenic pressure and climate change.

3.
Sci Total Environ ; 896: 165081, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37355122

RESUMO

Typology systems are frequently used in applied and fundamental ecology and are relevant for environmental monitoring and conservation. They aggregate ecosystems into discrete types based on biotic and abiotic variables, assuming that ecosystems of the same type are more alike than ecosystems of different types with regard to a specific property of interest. We evaluated whether this assumption is met by the Broad River Types (BRT), a recently proposed European river typology system, that classifies river segments based on abiotic variables, when it is used to group biological communities. We compiled data on the community composition of diatoms, fishes, and aquatic macrophytes throughout Europe and evaluated whether the composition is more similar in site groups with the same river type than in site groups of different river types using analysis of similarities, classification strength, typical species analysis, and the area under zeta diversity decline curves. We compared the performance of the BRT with those of four region-based typology systems, namely, Illies Freshwater Ecoregions, the Biogeographic Regions, the Freshwater Ecoregions of the World, and the Environmental Zones, as well as spatial autocorrelation (SA) classifications. All typology systems received low scores from most evaluation methods, relative to predefined thresholds and the SA classifications. The BRT often scored lowest of all typology systems. Within each typology system, community composition overlapped considerably between site groups defined by the types of the systems. The overlap tended to be the lowest for fishes and between Illies Freshwater Ecoregions. In conclusion, we found that existing broad-scale river typology systems fail to delineate site groups with distinct and compositionally homogeneous communities of diatoms, fishes, and macrophytes. A way to improve the fit between typology systems and biological communities might be to combine segment-based and region-based typology systems to simultaneously account for local environmental variation and historical distribution patterns, thus potentially improving the utility of broad-scale typology systems for freshwater biota.


Assuntos
Diatomáceas , Ecossistema , Animais , Rios , Peixes , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA