Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(1): e1011893, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166140

RESUMO

The hygiene hypothesis proposes that decreased exposure to infectious agents in developed countries may contribute to the development of allergic and autoimmune diseases. Trichinella spiralis, a parasitic roundworm, causes trichinellosis, also known as trichinosis, in humans. T. spiralis had many hosts, and almost any mammal could become infected. Adult worms lived in the small intestine, while the larvae lived in muscle cells of the same mammal. T. spiralis was a significant public health threat because it could cause severe illness and even death in humans who eat undercooked or raw meat containing the parasite. The complex interactions between gastrointestinal helminths, gut microbiota, and the host immune system present a challenge for researchers. Two groups of mice were infected with T. spiralis vs uninfected control, and the experiment was conducted over 60 days. The 16S rRNA gene sequences and untargeted LC/MS-based metabolomics of fecal and serum samples, respectively, from different stages of development of the Trichinella spiralis-mouse model, were examined in this study. Gut microbiota alterations and metabolic activity accompanied by parasite-induced immunomodulation were detected. The inflammation parameters of the duodenum (villus/crypt ratio, goblet cell number and size, and histological score) were involved in active inflammation and oxidative metabolite profiles. These profiles included increased biosynthesis of phenylalanine, tyrosine, and tryptophan while decreasing cholesterol metabolism and primary and secondary bile acid biosynthesis. These disrupted metabolisms adapted to infection stress during the enteral and parenteral phases and then return to homeostasis during the encapsulated phase. There was a shift from an abundance of Bacteroides in the parenteral phase to an abundance of probiotic Lactobacillus and Treg-associated-Clostridia in the encapsulated phase. Th2 immune response (IL-4/IL-5/IL-13), lamina propria Treg, and immune hyporesponsiveness metabolic pathways (decreased tropane, piperidine and pyridine alkaloid biosynthesis and biosynthesis of alkaloids derived from ornithine, lysine, and nicotinic acid) were all altered. These findings enhanced our understanding of gut microbiota and metabolic profiles of Trichinella -infected mice, which could be a driving force in parasite-shaping immune system maintenance.


Assuntos
Microbioma Gastrointestinal , Trichinella spiralis , Triquinelose , Camundongos , Humanos , Animais , RNA Ribossômico 16S , Inflamação , Imunidade , Redes e Vias Metabólicas , Imunomodulação , Mamíferos
2.
Cells ; 8(11)2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703440

RESUMO

Trichinella spiralis maintains chronic infections within its host, involving a variety of immunomodulatory properties, the mechanisms of which have not been completely elucidated. In this study, we found that T. spiralis infection induced strong regulatory T cell responses through parasite excretory-secretory (ES) products, characterized by increase of CD4+CD25+Foxp3+ and CD4+CD25-Foxp3+ Treg cells accompanied by high levels of IL-10 and TGF-ß. T. spiralis adult worm excretory-secretory products (AES) and muscle larvae excretory-secretory products (MES) were both able to activate BMDCs in vitro to facilitate their maturation and to create regulatory cytokines IL-10 and TGF-ß. The T. spiralis AES- and MES-pulsed dendritic cells (DCs) possessed abilities not only to present antigens to sensitized CD4+ T cell to stimulate their proliferation but also to induce naive CD4+ T cells to differentiate to Treg cells secreting IL-10 and TGF-ß. The passive transfer of T. spiralis AES- and MES-pulsed bone marrow-derived dendritic cells (BMDCs) conferred the naive mice to acquire the differentiation of Treg cells. T. spiralis AES possesses a better ability to induce Treg cells than did MES, although the latter has the ability to induce CD4+CD25-Foxp3+ Treg cells. The results obtained in this study suggested that T. spiralis ES products stimulate the differentiation of host Treg cells possibly through activating dendritic cells to create a regulatory environment that benefits the survival of the parasite in the host.


Assuntos
Antígenos de Helmintos/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Proteínas de Helminto/imunologia , Interações Hospedeiro-Parasita/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Reguladores/imunologia , Trichinella spiralis/imunologia , Animais , Biomarcadores , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Camundongos , Linfócitos T Reguladores/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Transcriptoma , Trichinella spiralis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA