RESUMO
OBJECTIVE: This research was designed to investigate the prognostic determinants of patients with traumatic brain injury (TBI) undergoing decompressive craniectomy (DC). METHODS: The present study was a retrospective single center research including a total of 112 patients undergoing DC for TBI in Liaocheng People's Hospital between January 2017 and December 2018. The results were measured by Extended Glasgow Outcome Sale (GOSE). The prognostic determinants were identified by univariate and binary logistic regression analysis between the deaths and survivors or favorable and unfavorable outcomes. RESULTS: At the six-month follow-up, the mortality was 45.5% including 37 (33.0%) patients died within 30 days. The independent prognostic factors of 30-day mortality were age (p=0.033), D-dimer level at admission (p=0.032) and postoperative hypernatremia (p=0.014). Seventy five patients survived more than 30 days after DC, among which 27 (36.0%) patients had unfavorable prognosis (GOSE 1-4) and 48 (64.0%) patients presented favorable prognosis (GOSE 5-8). After 30 days from DC, the occurrence of post-traumatic hydrocephalus(PTH) (p= 0.008) was associated with unfavorable prognosis. CONCLUSIONS: Although DC is an effective treatment for TBI patients, the mortality and morbidity risk remain high. A combination of age, D-dimer level at admission and postoperative hypernatremia may be a good prognostic factor for 30-day mortality. Developing an accurate therapy strategy to prevent and control PTH may be beneficial to the 6-month prognosis for TBI patients undergoing DC.
RESUMO
Gliomas are the most common tumor in the central nervous system in adults, with glioblastoma (GBM) representing the most malignant form, while low-grade glioma (LGG) is a less severe. The prognosis for glioma remains poor even after various treatments, such as chemotherapy and immunotherapy. Cuproptosis is a newly defined form of programmed cell death, distinct from ferroptosis and apoptosis, primarily caused by the accumulation of the copper within cells. In this study, we compared the difference between the expression of cuproptosis-related genes in GBM and LGG, respectively, and conducted further analysis on the enrichment pathways of the exclusive expressed cuproptosis-related mRNAs in GBM and LGG. We established two prediction models for survival status using xgboost and random forest algorithms and applied the ROSE algorithm to balance the dataset to improve model performance.
Assuntos
Glioma , Aprendizado de Máquina , RNA Longo não Codificante , Humanos , Glioma/genética , Glioma/mortalidade , Glioma/patologia , RNA Longo não Codificante/genética , Prognóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/patologia , Algoritmos , Biomarcadores Tumorais/genéticaRESUMO
BACKGROUND: Akt plays an important role in cell survival, proliferation, apoptosis and other activities. It also has been involved in maintaining smooth muscle cell contraction phenotypes in vitro and in vivo. Recent studies have focused on the inhibition of Akt in acute vasospasm and neuronal apoptosis after subarachnoid hemorrhage (SAH). However, its role in delayed cerebral vasospasm (DCVS) has not been reported. METHODS: In this study, using a "two-hemorrhage" rat model of SAH, we examined the expression of p-Akt and the formation of vasospasm in the basilar arteries. To investigate the possible role of Akt in phenotypic switching, we performed immunohistochemical staining to examine expressions of SMα-actin and proliferating cell nuclear antigen (PCNA), markers of smooth muscle phenotypic switching. RESULTS: We found that the basilar arteries exhibited vasospasm after SAH and that vasospasm became most severe on day 7 after SAH. Elevated protein expression of p-Akt was detected 4 days after SAH induction, peaked on day 7, and recovered on day 21, which was in a parallel time course to the development of DCVS. Moreover, results of immunohistochemical staining revealed enhanced expression of PCNA but gradual reduction in expression of SMα-actin from day 1 to day 7 after SAH; then, the expressions of PCNA and SMα-actin gradually recovered until day 21. CONCLUSIONS: These results support a novel mechanism in which the Akt signaling pathway plays an important role in the proliferation of smooth muscle cells (SMCs) rather than inducing phenotype switching in basilar arteries, which promotes the development of DCVS after SAH.
Assuntos
Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Hemorragia Subaracnóidea/metabolismo , Vasoespasmo Intracraniano/metabolismo , Animais , Apoptose/fisiologia , Artéria Basilar/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Masculino , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Cannulation implantation into the cisterna magna is an important procedure in cerebrospinal fluid (CSF) sampling and intracranial pressure (ICP) monitoring. The disadvantages of existing techniques include the risk of brain damage, compromised muscle mobility, and the complexity of the procedures. In the present study, the authors describe a modified, simple, and reliable procedure for long-term cannulation implantation into the cisterna magna in rats. The device consists of four parts: the puncture segment, the connection segment, the fixing segment, and the external segment. Intraoperative ICP monitoring and post-operative computed tomography (CT) scans were performed, which confirmed the accuracy and safety of this method. There were no limitations on the daily activities of the rats when long-term drainage was carried out for 1 week. This new technique offers an improved method of cannulation and will be a potentially useful method for CSF sampling and ICP monitoring in neuroscience research.
RESUMO
Introduction: Elevated intracranial pressure (ICP) and blood components are the main trigger factors starting the complex pathophysiological cascade following subarachnoid hemorrhage (SAH). It is not clear whether they independently contribute to tissue damage or whether their impact cannot be differentiated from each other. We here aimed to establish a rat intracranial hypertension model that allows distinguishing the effects of these two factors and investigating the relationship between elevated ICP and hypoperfusion very early after SAH. Methods: Blood or four different types of fluids [gelofusine, silicone oil, artificial cerebrospinal fluid (aCSF), aCSF plus xanthan (CX)] were injected into the cisterna magna in anesthetized rats, respectively. Arterial blood pressure, ICP and cerebral blood flow (CBF) were continuously measured up to 6 h after injection. Enzyme-linked immunosorbent assays were performed to measure the pro-inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in brain cortex and peripheral blood. Results: Silicone oil injection caused deaths of almost all animals. Compared to blood, gelofusine resulted in lower peak ICP and lower plateau phase. Artificial CSF reached a comparable ICP peak value but failed to reach the ICP plateau of blood injection. Injection of CX with comparable viscosity as blood reproduced the ICP course of the blood injection group. Compared with the CBF course after blood injection, CX induced a comparable early global ischemia within the first minutes which was followed by a prompt return to baseline level with no further hypoperfusion despite an equal ICP course. The inflammatory response within the tissue did not differ between blood or blood-substitute injection. The systemic inflammation was significantly more pronounced in the CX injection group compared with the other fluids including blood. Discussion: By cisterna magna injection of blood substitution fluids, we established a subarachnoid space occupying rat model that exactly mimicked the course of ICP in the first 6 h following blood injection. Fluids lacking blood components did not induce the typical prolonged hypoperfusion occurring after blood-injection in this very early phase. Our study strongly suggests that blood components rather than elevated ICP play an important role for early hypoperfusion events in SAH.
RESUMO
Intracranial hypertension is a common phenomenon in patients with aneurysmal subarachnoid hemorrhage (aSAH). Elevated intracranial pressure (ICP) plays an important role in early brain injuries and is associated with unfavorable outcomes. Despite advances in the management of aSAH, there is no consensus about the mechanisms involved in ICP increases after aSAH. Recently, a growing body of evidence suggests that oxidative stress (OS) may play a crucial role in physio-pathological changes following aSAH, which may also contribute to increased ICP. Herein, we discuss a potential relation between increased ICP and OS, and resultantly propose antioxidant mechanisms as a potential therapeutic strategy for the treatment of ICP elevation following aSAH.
RESUMO
Pancreatic ductal adenocarcinoma (PDAC) and cholangiocarcinoma (CCA) are both deadly cancers and they share many biological features besides their close anatomical location. One of the main histological features is neurotropism, which results in frequent perineural invasion. The underlying mechanism of cancer cells favoring growth by and through the nerve fibers is not fully understood. In this review, we provide knowledge of these cancers with frequent perineural invasion. We discuss nerve fiber crosstalk with the main different components of the tumor microenvironment (TME), the immune cells, and the fibroblasts. Also, we discuss the crosstalk between the nerve fibers and the cancer. We highlight the shared signaling pathways of the mechanisms behind perineural invasion in PDAC and CCA. Hereby we have focussed on signaling neurotransmitters and neuropeptides which may be a target for future therapies. Furthermore, we have summarized retrospective results of the previous literature about nerve fibers in PDAC and CCA patients. We provide our point of view in the potential for nerve fibers to be used as powerful biomarker for prognosis, as a tool to stratify patients for therapy or as a target in a (combination) therapy. Taking the presence of nerves into account can potentially change the field of personalized care in these neurotropic cancers.
Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Colangiocarcinoma/genética , Fibras Nervosas/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/terapia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Colangiocarcinoma/terapia , Terapia Combinada , Humanos , Fibras Nervosas/patologia , Prognóstico , Transdução de Sinais/genética , Microambiente Tumoral/genéticaRESUMO
RATIONALE: The improvement of microneurosurgery and neuroimaging, as well as neuronavigation and neurophysiological monitoring, enables neurosurgeons to safely and accurately resect lesions on the brainstem. PATIENT CONCERNS: A 54-year-old man, with 2-year history of hypertension, presented with sudden loss of consciousness for 1.5âhours. DIAGNOSES: Spontaneous brainstem hemorrhage. INTERVENTIONS: We performed posterior fossa decompression together with hematoma evacuation in the super early stage for the patient. OUTCOMES: The patient regained normal spontaneous breathing function after surgery. And he needed help for daily activities with hemiplegia of right limb at three-month follow-up. LESSONS: The hematoma evacuation together with posterior fossa decompression in the super early stage maybe a good treatment for patients in a deep coma with a large hematoma at the dorsal side.
Assuntos
Tronco Encefálico/cirurgia , Hemorragia Intracraniana Hipertensiva/cirurgia , Tronco Encefálico/diagnóstico por imagem , Humanos , Hemorragia Intracraniana Hipertensiva/diagnóstico por imagem , Masculino , Pessoa de Meia-IdadeRESUMO
RATIONALE: There are many difficult cases in the clinic because of the diversity of foreign bodies. The removal of a syringe cap is not so easy because there is always no hole at the closed end. PATIENT CONCERNS: A 54-year-old man suddenly developed dyspnea during his treatment in the hospital. DIAGNOSES: Foreign body in the left main bronchus. INTERVENTIONS: The foreign body was removed using fiberoptic bronchoscope together with gastroscope biopsy forceps. OUTCOMES: A repeat CT showed well inflation of left lung. LESSONS: The combined use of gastroscope biopsy forceps in trachea is more conducive to remove a foreign body similar to a syringe cap.
Assuntos
Brônquios , Broncoscopia , Corpos Estranhos/cirurgia , Gastroscopia/instrumentação , Biópsia/instrumentação , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Cerebral vasospasm (CVS) is the most treatable component of subarachnoid hemorrhage (SAH), which can be reduced by endothelin receptor antagonists. Endothelin-evoked vasospasm is considered to be mediated by Ca(2+) influx in the smooth muscle through voltage-dependent Ca(2+) channel (VDCC) and nonselective cation channels (NSCC). Because VDCC antagonists such as nimodipine have been shown to be relatively less effective than the endothelin receptor antagonists, it is assumed that NSCC maybe a more important component in mediating Ca(2+) influx during CVS. In this study, we used the basilar arteries from a "two-hemorrhage" rat model of SAH to investigate expressions of transient receptor potential channel 1 (TRPC1), transient receptor potential channel 3 (TRPC3) and stromal interaction molecule 1 (STIM1), which are considered as the promising candidates constituting NSCC. To investigate the possible role of NSCC in phenotypic switching, we performed immunohistochemical staining to examine expressions of SMα-actin and PCNA, markers of smooth muscle phenotypic switching. We found that the basilar arteries exhibited vasospasm after SAH and that vasospasm became more severe on days 5 and 7 after SAH. Elevated mRNA and protein expressions of TRPC1 and STIM1 were detected after SAH and peaked on days 5 and 7, which was in a parallel time course to the development of cerebral vasospasm. The mRNA and protein expressions of TRPC3 were not changed in the SAH group when compared with those in the control. Results of immunohistochemical staining with anti-PCNA and anti-SMα-actin antibodies also showed enhanced expression of PCNA and disappearance of SMα-actin from day 1 to day 7. Taken together, the above results supported a novel mechanism that the components of store-operated calcium channels, TRPC1 and STIM1 mediated the Ca(2+) influx and phenotypic switching in smooth muscle cells, which promoted the development of vasospasm after SAH. TRPC3, which is a component of receptor-operated calcium channels, was not involved in the above-mentioned mechanism.