Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(30): e2307524120, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459508

RESUMO

Of the six elements incorporated into the major polymers of life, phosphorus is the least abundant on a global scale [E. Anders, M. Ebihara, Geochim. Cosmochim. Acta 46, 2363-2380 (1982)] and has been described as the "ultimate limiting nutrient" [T. Tyrrell, Nature 400, 525-531 (1999)]. In the modern ocean, the supply of dissolved phosphorus is predominantly sustained by the oxidative remineralization/recycling of organic phosphorus in seawater. However, in the Archean Eon (4 to 2.5 Ga), surface waters were anoxic and reducing. Here, we conducted photochemical experiments to test whether photodegradation of ubiquitous dissolved organic phosphorus could facilitate phosphorus recycling under the simulated Archean conditions. Our results strongly suggest that organic phosphorus compounds, which were produced by marine biota (e.g., adenosine monophosphate and phosphatidylserine) or delivered by meteorites (e.g., methyl phosphonate) can undergo rapid photodegradation and release inorganic phosphate into solution under anoxic conditions. Our experimental results and theoretical calculations indicate that photodegradation of organic phosphorus could have been a significant source of bioavailable phosphorus in the early ocean and would have fueled primary production during the Archean eon.

2.
Proc Natl Acad Sci U S A ; 119(39): e2201388119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122219

RESUMO

Saturn's moon Enceladus has a potentially habitable subsurface water ocean that contains canonical building blocks of life (organic and inorganic carbon, ammonia, possibly hydrogen sulfide) and chemical energy (disequilibria for methanogenesis). However, its habitability could be strongly affected by the unknown availability of phosphorus (P). Here, we perform thermodynamic and kinetic modeling that simulates P geochemistry based on recent insights into the geochemistry of the ocean-seafloor system on Enceladus. We find that aqueous P should predominantly exist as orthophosphate (e.g., HPO42-), and total dissolved inorganic P could reach 10-7 to 10-2 mol/kg H2O, generally increasing with lower pH and higher dissolved CO2, but also depending upon dissolved ammonia and silica. Levels are much higher than <10-10 mol/kg H2O from previous estimates and close to or higher than ∼10-6 mol/kg H2O in modern Earth seawater. The high P concentration is primarily ascribed to a high (bi)carbonate concentration, which decreases the concentrations of multivalent cations via carbonate mineral formation, allowing phosphate to accumulate. Kinetic modeling of phosphate mineral dissolution suggests that geologically rapid release of P from seafloor weathering of a chondritic rocky core could supply millimoles of total dissolved P per kilogram of H2O within 105 y, much less than the likely age of Enceladus's ocean (108 to 109 y). These results provide further evidence of habitable ocean conditions and show that any oceanic life would not be inhibited by low P availability.


Assuntos
Sulfeto de Hidrogênio , Fósforo , Amônia , Carbono , Dióxido de Carbono , Minerais , Oceanos e Mares , Fosfatos , Dióxido de Silício , Água
3.
Proc Natl Acad Sci U S A ; 117(37): 22698-22704, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868429

RESUMO

The oxidation states of manganese minerals in the geological record have been interpreted as proxies for the evolution of molecular oxygen in the Archean eon. Here we report that an Archean manganese mineral, rhodochrosite (MnCO3), can be photochemically oxidized by light under anoxic, abiotic conditions. Rhodochrosite has a calculated bandgap of about 5.4 eV, corresponding to light energy centering around 230 nm. Light at that wavelength would have been present on Earth's surface in the Archean, prior to the formation of stratospheric ozone. We show experimentally that the photooxidation of rhodochrosite in suspension with light centered at 230 nm produced H2 gas and manganite (γ-MnOOH) with an apparent quantum yield of 1.37 × 10-3 moles hydrogen per moles incident photons. Our results suggest that manganese oxides could have formed abiotically on the surface in shallow waters and on continents during the Archean eon in the absence of molecular oxygen.

4.
Langmuir ; 30(40): 12018-26, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25238130

RESUMO

A simple one-step method for preparing biocompatible nanoparticles of gadolinium ferrocyanide coordination polymer KGd(H2O)2[Fe(CN)6]·H2O is reported. The crystal structure of this coordination polymer is determined by X-ray powder diffraction using the bulk materials. The stability, cytotoxicity, cellular uptake, and MR phantom and cellular imaging studies suggest that this coordination-polymer structural platform offers a unique opportunity for developing the next generation of T1-weighted contrast agents with high relaxivity as cellular MR probes for biological receptors or markers. Such high-relaxivity MR probes may hold potential in the study of molecular events and may be used for in vivo MR imaging in biomedical research and clinical applications.


Assuntos
Materiais Biocompatíveis/química , Meios de Contraste/química , Complexos de Coordenação/química , Ferrocianetos/química , Gadolínio/química , Animais , Cristalografia por Raios X , Humanos , Imageamento por Ressonância Magnética , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Nanopartículas/química , Nanopartículas/ultraestrutura , Imagens de Fantasmas , Água/química
5.
Sci Adv ; 10(13): eadk5991, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552019

RESUMO

The mid-Proterozoic, spanning 1.8 to 0.8 billion years ago, is recognized as a phase of marine anoxia, low marine primary productivity (MPP), and constrained eukaryotic biodiversity. However, emerging evidence suggesting intermittent environmental disturbances and concurrent eukaryotic evolution challenges the notion of a stagnant Earth during this era. We present a study detailing volcanic activity and its consequential impact on terrestrial weathering and MPP, elucidated through the examination of 1.4-billion-year-old tropical offshore sediments. Our investigation, leveraging precise mercury (Hg) and lithium (Li) isotopic analyses, reveals the introduction of fresh rock substrates by local volcanism. This geological event initiated a transformative process, shifting the initial regolith-dominated condition in tropical lowland to a regime of enhanced chemical weathering and denudation efficiency. Notably, the heightened influx of nutrient-rich volcanic derivatives, especially phosphorus, spurred MPP rates and heightened organic carbon burial. These factors emerge as potential drivers in breaking the long-term static state of the mid-Proterozoic.

6.
Life (Basel) ; 13(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37895342

RESUMO

The emergence of Darwinian evolution represents a central point in the history of life as we know it. However, it is generally assumed that the environments in which life appeared were hydrothermal environments, with highly variable conditions in terms of pH, temperature or redox levels. Are evolutionary processes favored to appear in such settings, where the target of biological adaptation changes over time? How would the first evolving populations compete with non-evolving populations? Using a numerical model, we explore the effect of environmental variation on the outcome of the competition between evolving and non-evolving populations of protocells. Our study found that, while evolving protocells consistently outcompete non-evolving populations in stable environments, they are outcompeted in variable environments when environmental variations occur on a timescale similar to the average duration of a generation. This is due to the energetic burden represented by adaptation to the wrong environmental conditions. Since the timescale of temperature variation in natural hydrothermal settings overlaps with the average prokaryote generation time, the current work indicates that a solution must have been found by early life to overcome this threshold.

7.
Front Microbiol ; 14: 1032073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089554

RESUMO

A prerequisite for prebiotic chemistry is the accumulation of critical building blocks of life. Some studies argue that more frequent impact events on the primitive Earth could have induced a more reducing steam atmosphere and thus favor widespread and more efficient synthesis of life building blocks. However, elevated temperature is also proposed to threaten the stability of organics and whether life building blocks could accumulate to appreciable levels in the reducing yet hot surface seawater beneath the steam atmosphere is still poorly examined. Here, we used a thermodynamic tool to examine the synthesis affinity of various life building blocks using inorganic gasses as reactants at elevated temperatures and corresponding steam pressures relevant with the steam-seawater interface. Our calculations show that although the synthesis affinity of all life building blocks decreases when temperature increases, many organics, including methane, methanol, and carboxylic acids, have positive synthesis affinity over a wide range of temperatures, implying that these species were favorable to form (>10-6 molal) in the surface seawater. However, cyanide and formaldehyde have overall negative affinities, suggesting that these critical compounds would tend to undergo hydrolysis in the surface seawaters. Most of the 18 investigated amino acids have positive affinities at temperature <220°C and their synthesis affinity increases under more alkaline conditions. Sugars, ribose, and nucleobases have overall negative synthesis affinities at the investigated range of temperatures. Synthesis affinities are shown to be sensitive to the hydrogen fugacity. Higher hydrogen fugacity (in equilibrium with FQI or IW) favors the synthesis and accumulation of nearly all the investigated compounds, except for HCN and its derivate products. In summary, our results suggest that reducing conditions induced by primitive impacts could indeed favor the synthesis/accumulation of some life building blocks, but some critical species, particularly HCN and nucleosides, were still unfavorable to accumulate to appreciable levels. Our results can provide helpful guidance for future efforts to search for or understand the stability of biomolecules on other planets like Mars and icy moons. We advocate examining craters formed by more reducing impactors to look for the preservation of prebiotic materials.

8.
Nat Commun ; 14(1): 347, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681679

RESUMO

How simple abiotic organic compounds evolve toward more complex molecules of potentially prebiotic importance remains a missing key to establish where life possibly emerged. The limited variety of abiotic organics, their low concentrations and the possible pathways identified so far in hydrothermal fluids have long hampered a unifying theory of a hydrothermal origin for the emergence of life on Earth. Here we present an alternative road to abiotic organic synthesis and diversification in hydrothermal environments, which involves magmatic degassing and water-consuming mineral reactions occurring in mineral microcavities. This combination gathers key gases (N2, H2, CH4, CH3SH) and various polyaromatic materials associated with nanodiamonds and mineral products of olivine hydration (serpentinization). This endogenous assemblage results from re-speciation and drying of cooling C-O-S-H-N fluids entrapped below 600 °C-2 kbars in rocks forming the present-day oceanic lithosphere. Serpentinization dries out the system toward macromolecular carbon condensation, while olivine pods keep ingredients trapped until they are remobilized for further reactions at shallower levels. Results greatly extend our understanding of the forms of abiotic organic carbon available in hydrothermal environments and open new pathways for organic synthesis encompassing the role of minerals and drying. Such processes are expected in other planetary bodies wherever olivine-rich magmatic systems get cooled down and hydrated.


Assuntos
Minerais , Silicatos , Compostos de Magnésio , Compostos Orgânicos , Carbono
9.
Sci Adv ; 9(18): eade6923, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146138

RESUMO

The release of phosphorus (P) from crustal rocks during weathering plays a key role in determining the size of Earth's biosphere, yet the concentration of P in crustal rocks over time remains controversial. Here, we combine spatial, temporal, and chemical measurements of preserved rocks to reconstruct the lithological and chemical evolution of Earth's continental crust. We identify a threefold increase in average crustal P concentrations across the Neoproterozoic-Phanerozoic boundary (600 to 400 million years), showing that preferential biomass burial on shelves acted to progressively concentrate P within continental crust. Rapid compositional change was made possible by massive removal of ancient P-poor rock and deposition of young P-rich sediment during an episode of enhanced global erosion. Subsequent weathering of newly P-rich crust led to increased riverine P fluxes to the ocean. Our results suggest that global erosion coupled to sedimentary P-enrichment forged a markedly nutrient-rich crust at the dawn of the Phanerozoic.

10.
Small Methods ; 7(12): e2300119, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37203261

RESUMO

α-Hydroxy acids are prebiotic monomers that undergo dehydration synthesis to form polyester gels, which assemble into membraneless microdroplets upon aqueous rehydration. These microdroplets are proposed as protocells that can segregate and compartmentalize primitive molecules/reactions. Different primitive aqueous environments with a variety of salts could have hosted chemistries that formed polyester microdroplets. These salts could be essential cofactors of compartmentalized prebiotic reactions or even directly affect protocell structure. However, fully understanding polyester-salt interactions remains elusive, partially due to technical challenges of quantitative measurements in condensed phases. Here, spectroscopic and biophysical methods are applied to analyze salt uptake by polyester microdroplets. Inductively coupled plasma mass spectrometry is applied to measure the cation concentration within polyester microdroplets after addition of chloride salts. Combined with methods to determine the effects of salt uptake on droplet turbidity, size, surface potential and internal water distribution, it was observed that polyester microdroplets can selectively partition salt cations, leading to differential microdroplet coalescence due to ionic screening effects reducing electrostatic repulsion forces between microdroplets. Through applying existing techniques to novel analyses related to primitive compartment chemistry and biophysics, this study suggests that even minor differences in analyte uptake can lead to significant protocellular structural change.

11.
Sci Rep ; 12(1): 4956, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322071

RESUMO

Earth surface redox conditions are intimately linked to the co-evolution of the geosphere and biosphere. Minerals provide a record of Earth's evolving surface and interior chemistry in geologic time due to many different processes (e.g. tectonic, volcanic, sedimentary, oxidative, etc.). Here, we show how the bipartite network of minerals and their shared constituent elements expanded and evolved over geologic time. To further investigate network expansion over time, we derive and apply a novel metric (weighted mineral element electronegativity coefficient of variation; wMEECV) to quantify intra-mineral electronegativity variation with respect to redox. We find that element electronegativity and hard soft acid base (HSAB) properties are central factors in mineral redox chemistry under a wide range of conditions. Global shifts in mineral element electronegativity and HSAB associations represented by wMEECV changes at 1.8 and 0.6 billion years ago align with decreased continental elevation followed by the transition from the intermediate ocean and glaciation eras to post-glaciation, increased atmospheric oxygen in the Phanerozoic, and enhanced continental weathering. Consequently, network analysis of mineral element electronegativity and HSAB properties reveal that orogenic activity, evolving redox state of the mantle, planetary oxygenation, and climatic transitions directly impacted the evolving chemical complexity of Earth's crust.

12.
Nat Commun ; 13(1): 7647, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496413

RESUMO

Terrestrial planet Venus has a similar size, mass, and bulk composition to Earth. Previous studies proposed that local plume-induced subduction existed on both early Earth and Venus, and this prototype subduction might initiate plate tectonics on Earth but not on Venus. In this study, we simulate the buoyancy of submerged slabs in a hypothesized 2-D thermo-metamorphic model. We analyze the thermal state of the slab, which is then used for calculating density in response to thermal and phase changes. The buoyancy of slab mantle lithosphere is primarily controlled by the temperatures and the buoyancy of slab crust is dominated by metamorphic phase changes. Difference in the eclogitization process contributes most to the slab buoyancy difference between Earth and Venus, which makes the subducted Venus' slab consistently less dense than Earth's. The greater chemical buoyancy on Venus, acting as a resistance to subduction, may have impeded the transition into self-sustained subduction and led to a different tectonic regime on Venus. This hypothesis may be further tested as more petrological data of Venus become available, which will further help to assess the impact of petro-tectonics on the planet's habitability.

13.
Environ Int ; 164: 107228, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35468407

RESUMO

Phosphorus (P) chemistry and its dynamic cycling are essential for understanding aquatic primary productivity and ecosystem structure. However, there is a lack of knowledge on P chemistry in pristine aquatic ecosystems, such as in Antarctica. Here, we applied the Standards, Measurements and Testing Program (SMT) procedure and nuclear magnetic resonance spectroscopy (NMR) to reveal P speciation in two types of lacustrine sediment cores collected from Inexpressible Island, Ross Sea, East Antarctica. The Positive Matrix Factorization Model and Generalized Additive Models were applied to quantitatively identify the P sources and estimate relative effects of various environmental factors on the speciation. Our results demonstrate that orthophosphate, mainly as Ca-P, is the major component and the ortho-monoesters are the predominant organic phosphorus (OP) form in lacustrine sediments. Ornithogenic lacustrine sediments have a higher content of P as Ca-P than sediments with little or no penguin influence. Our model further suggests that penguin guano is the most important source for Ca-P, accounting for 80%, while detrital input is the predominant source for Fe/Al-P (up to 90%). The content of ortho-monoesters, as revealed by NMR, declines with depth, reflecting mineralization process of OP in the sediments. Moreover, we observed higher relative proportions of organic P in the sediments with little guano influence and the deposition of organic P are likely facilitated by microbial mats. Overall, our data suggest that burial of P in Antarctic lakes is sensitive to different P sources and sedimentary environments. The relatively higher bioavailable phosphorus in lacustrine sediments largely controls growth of aquatic microbial mats in oligotrophic lakes and ponds in Antarctica. The sediment profile data also indicate that P burial increased during the Medieval Climate Anomaly period, and climate warming is more conducive to P burial through the expansion of penguin populations and productivity of microbial mats. Our findings represent the first systematic understanding of natural P cycling dynamics and its main controlling factors in pristine ponds with different organic sources in Antarctica.


Assuntos
Spheniscidae , Poluentes Químicos da Água , Animais , Regiões Antárticas , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos/química , Lagos/química , Fósforo/análise , Poluentes Químicos da Água/análise
14.
Sci Adv ; 8(26): eabn2226, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35767603

RESUMO

Sulfur is an essential element of life that is assimilated by Earth's biosphere through the chemical breakdown of pyrite. On the early Earth, pyrite weathering by atmospheric oxygen was severely limited, and low marine sulfate concentrations persisted for much of the Archean eon. Here, we show an anoxic photochemical mechanism of pyrite weathering that could have provided substantial amounts of sulfate to the oceans as continents formed in the late Archean. Pyrite grains suspended in anoxic ferrous iron solutions produced millimolar sulfate concentrations when irradiated with ultraviolet light. The Fe2+(aq) was photooxidized, which, in turn, led to the chemical oxidation of pyritic sulfur. Additional experiments conducted with 2.68 Ga shale demonstrated that photochemically derived ferric iron oxidizes and dissolves sedimentary pyrite during chemical weathering. The results suggest that before the rise of atmospheric oxygen, oxidative pyrite weathering on Archean continents was controlled by the exposure of land to sunlight.

15.
Inorg Chem ; 50(17): 7910-2, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21797245

RESUMO

An aqueous synthetic procedure for preparing nanoparticles of the novel potassium bismuth ferrocyanide coordination polymer KBi(H(2)O)(2)[Fe(CN)(6)]·H(2)O is reported. The crystal structure of this coordination polymer is determined through X-ray powder diffraction using the bulk materials. The stability, cytotoxicity, and potential use of such nanoparticles coated with PVP as a CT contrast agent are investigated.


Assuntos
Meios de Contraste/síntese química , Nanopartículas/química , Tomografia Computadorizada por Raios X , Bismuto/química , Bismuto/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/química , Relação Dose-Resposta a Droga , Ferrocianetos/química , Ferrocianetos/farmacologia , Células HeLa , Humanos , Modelos Moleculares , Tamanho da Partícula , Polivinil/química , Potássio/química , Difração de Pó , Pirrolidinas/química , Propriedades de Superfície
16.
Science ; 371(6530): 728-731, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33574211

RESUMO

Mountain belts modulate denudation flux and hydrologic processes and are thus fundamental to nutrient cycling on Earth's surface. We used europium anomalies in detrital zircons to track mountain-building processes over Earth's history. We show that the average thickness of active continental crust varied on billion-year time scales, with the thickest crust formed in the Archean and Phanerozoic. By contrast, the Proterozoic witnessed continuously decreasing crustal thickness, leaving the continents devoid of high mountains until the end of the eon. We link this gradually diminished orogenesis to the long-lived Nuna-Rodinia supercontinent, which altered the mantle thermal structure and weakened the continental lithosphere. This prolonged orogenic quiescence may have resulted in a persistent famine in the oceans and stalled life's evolution in Earth's middle age.

17.
Geobiology ; 18(2): 127-138, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32048807

RESUMO

The incorporation of metal cofactors into protein active sites and/or active regions expanded the network of microbial metabolism during the Archean eon. The bioavailability of crucial metal cofactors is largely influenced by earth surface redox state, which impacted the timing of metabolic evolution. Vanadium (V) is a unique element in geo-bio-coevolution due to its complex redox chemistry and specific biological functions. Thus, the extent of microbial V utilization potentially represents an important link between the geo- and biospheres in deep time. In this study, we used geochemical modeling and network analysis to investigate the availability and chemical speciation of V in the environment, and the emergence and changing chemistry of V-containing minerals throughout earth history. The redox state of V shifted from a more reduced V(III) state in Archean aqueous geochemistry and mineralogy to more oxidized V(IV) and V(V) states in the Proterozoic and Phanerozoic. The weathering of vanadium sulfides, vanadium alkali metal minerals, and vanadium alkaline earth metal minerals were potential sources of V to the environment and microbial utilization. Community detection analysis of the expanding V mineral network indicates tectonic and redox influence on the distribution of V mineral-forming elements. In reducing environments, energetic drivers existed for V to potentially be involved in early nitrogen fixation, while in oxidizing environments vanadate ( VO43-]]> ) could have acted as a metabolic electron acceptor and phosphate mimicking enzyme inhibitor. The coevolving chemical speciation and biological functions of V due to earth's changing surface redox conditions demonstrate the crucial links between the geosphere and biosphere in the evolution of metabolic electron transfer pathways and biogeochemical cycles from the Archean to Phanerozoic.


Assuntos
Vanádio/química , Disponibilidade Biológica , Planeta Terra , Oxirredução , Água
18.
PLoS Comput Biol ; 4(8): e1000138, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18670594

RESUMO

Cysteine-rich intestinal protein 1 (CRIP1) has been identified as a novel marker for early detection of cancers. Here we report on the use of phage display in combination with molecular modeling to identify a high-affinity ligand for CRIP1. Panning experiments using a circularized C7C phage library yielded several consensus sequences with modest binding affinities to purified CRIP1. Two sequence motifs, A1 and B5, having the highest affinities for CRIP1, were chosen for further study. With peptide structure information and the NMR structure of CRIP1, the higher-affinity A1 peptide was computationally redesigned, yielding a novel peptide, A1M, whose affinity was predicted to be much improved. Synthesis of the peptide and saturation and competitive binding studies demonstrated approximately a 10-28-fold improvement in the affinity of A1M compared to that of either A1 or B5 peptide. These techniques have broad application to the design of novel ligand peptides.


Assuntos
Proteínas de Transporte/agonistas , Proteínas de Transporte/antagonistas & inibidores , Biologia Computacional/métodos , Ligantes , Motivos de Aminoácidos , Ligação Competitiva , Colífagos , Humanos , Proteínas com Domínio LIM , Modelos Moleculares , Biblioteca de Peptídeos , Peptídeos/análise , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica , Termodinâmica
19.
Astrobiology ; 18(4): 381-392, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29620923

RESUMO

Icy environments may have been common on early Earth due to the faint young sun. Previous studies have proposed that the formation of large icy bodies in the early ocean could concentrate the building blocks of life in eutectic fluids and, therefore, facilitate the polymerization of monomers. This hypothesis is based on the untested assumption that organic molecules are virtually incompatible in ice Ih (hexagonal ice). In this study, we conducted freezing experiments to explore the partitioning behavior of selected amino acids (AAs; glycine, l-alanine, l-proline, and l-phenylalanine) between ice Ih and aqueous solutions analogous to seawater. We allowed ice crystals to grow slowly from a few seeds in equilibrium with the solution and used Raman spectroscopy to analyze in situ the relative concentrations of AAs in the ice and aqueous solution. During freezing, there was no precipitation of AA crystals, indicating that the concentrations in solution never reached their solubility limit, even when the droplet was mostly frozen. Analyses of the Raman spectra of the ice and eutectic solution suggested that considerable amounts of AAs existed in the ice phase with partition coefficients varying between 0.2 and 0.5. These observations imply little incompatibility of AAs in ice Ih during the freezing of the solutions, rendering the concentration hypothesis in a eutectic system unwarranted. However, incorporation into ice Ih could protect AAs from decomposition or racemization and significantly improve the efficiency of extraterrestrial transport of small organics. Therefore, this study supports the hypothesis of extraterrestrial delivery of organic molecules in icy comets and asteroids to the primitive Earth as suggested by an increasing number of independent observations. Key Words: Ice Ih-Partition coefficient-Amino acids-Polymerization-Extraterrestrial transport of organics. Astrobiology 18, 381-392.


Assuntos
Aminoácidos/análise , Gelo , Origem da Vida , Planeta Terra , Congelamento , Água do Mar/química , Análise Espectral Raman
20.
Life (Basel) ; 8(4)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486384

RESUMO

Adsorption of prebiotic building blocks is proposed to have played a role in the emergence of life on Earth. The experimental and theoretical study of this phenomenon should be guided by our knowledge of the geochemistry of the habitable early Earth environments, which could have spanned a large range of settings. Adsorption being an interfacial phenomenon, experiments can be built around the minerals that probably exhibited the largest specific surface areas and were the most abundant, i.e., phyllosilicates. Our current work aims at understanding how nucleotides, the building blocks of RNA and DNA, might have interacted with phyllosilicates under various physico-chemical conditions. We carried out and refined batch adsorption studies to explore parameters such as temperature, pH, salinity, etc. We built a comprehensive, generalized model of the adsorption mechanisms of nucleotides onto phyllosilicate particles, mainly governed by phosphate reactivity. More recently, we used surface chemistry and geochemistry techniques, such as vibrational spectroscopy, low pressure gas adsorption, X-ray microscopy, and theoretical simulations, in order to acquire direct data on the adsorption configurations and localization of nucleotides on mineral surfaces. Although some of these techniques proved to be challenging, questioning our ability to easily detect biosignatures, they confirmed and complemented our pre-established model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA