Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893327

RESUMO

Magnesium-based hydrogen storage materials have garnered significant attention due to their high hydrogen storage capacity, abundance, and low cost. However, the slow kinetics and high desorption temperature of magnesium hydride hinder its practical application. Various preparation methods have been developed to improve the hydrogen storage properties of magnesium-based materials. This review comprehensively summarizes the recent advances in the preparation methods of magnesium-based hydrogen storage materials, including mechanical ball milling, methanol-wrapped chemical vapor deposition, plasma-assisted ball milling, organic ligand-assisted synthesis, and other emerging methods. The principles, processes, key parameters, and modification strategies of each method are discussed in detail, along with representative research cases. Furthermore, the advantages and disadvantages of different preparation methods are compared and evaluated, and their influence on hydrogen storage properties is analyzed. The practical application potential of these methods is also assessed, considering factors such as hydrogen storage performance, scalability, and cost-effectiveness. Finally, the existing challenges and future research directions in this field are outlined, emphasizing the need for further development of high-performance and cost-effective magnesium-based hydrogen storage materials for clean energy applications. This review provides valuable insights and references for researchers working on the development of advanced magnesium-based hydrogen storage technologies.

2.
Molecules ; 29(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893401

RESUMO

Magnesium-based hydrogen storage alloys have attracted significant attention as promising materials for solid-state hydrogen storage due to their high hydrogen storage capacity, abundant reserves, low cost, and reversibility. However, the widespread application of these alloys is hindered by several challenges, including slow hydrogen absorption/desorption kinetics, high thermodynamic stability of magnesium hydride, and limited cycle life. This comprehensive review provides an in-depth overview of the recent advances in magnesium-based hydrogen storage alloys, covering their fundamental properties, synthesis methods, modification strategies, hydrogen storage performance, and potential applications. The review discusses the thermodynamic and kinetic properties of magnesium-based alloys, as well as the effects of alloying, nanostructuring, and surface modification on their hydrogen storage performance. The hydrogen absorption/desorption properties of different magnesium-based alloy systems are compared, and the influence of various modification strategies on these properties is examined. The review also explores the potential applications of magnesium-based hydrogen storage alloys, including mobile and stationary hydrogen storage, rechargeable batteries, and thermal energy storage. Finally, the current challenges and future research directions in this field are discussed, highlighting the need for fundamental understanding of hydrogen storage mechanisms, development of novel alloy compositions, optimization of modification strategies, integration of magnesium-based alloys into hydrogen storage systems, and collaboration between academia and industry.

3.
Materials (Basel) ; 17(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893774

RESUMO

Mg-based materials have been widely studied as potential hydrogen storage media due to their high theoretical hydrogen capacity, low cost, and abundant reserves. However, the sluggish hydrogen absorption/desorption kinetics and high thermodynamic stability of Mg-based hydrides have hindered their practical application. Ball milling has emerged as a versatile and effective technique to synthesize and modify nanostructured Mg-based hydrides with enhanced hydrogen storage properties. This review provides a comprehensive summary of the state-of-the-art progress in the ball milling of Mg-based hydrogen storage materials. The synthesis mechanisms, microstructural evolution, and hydrogen storage properties of nanocrystalline and amorphous Mg-based hydrides prepared via ball milling are systematically reviewed. The effects of various catalytic additives, including transition metals, metal oxides, carbon materials, and metal halides, on the kinetics and thermodynamics of Mg-based hydrides are discussed in detail. Furthermore, the strategies for synthesizing nanocomposite Mg-based hydrides via ball milling with other hydrides, MOFs, and carbon scaffolds are highlighted, with an emphasis on the importance of nanoconfinement and interfacial effects. Finally, the challenges and future perspectives of ball-milled Mg-based hydrides for practical on-board hydrogen storage applications are outlined. This review aims to provide valuable insights and guidance for the development of advanced Mg-based hydrogen storage materials with superior performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA