Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 688
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(2): 346-362.e17, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36638793

RESUMO

Ribosomes frequently stall during mRNA translation, resulting in the context-dependent activation of quality control pathways to maintain proteostasis. However, surveillance mechanisms that specifically respond to stalled ribosomes with an occluded A site have not been identified. We discovered that the elongation factor-1α (eEF1A) inhibitor, ternatin-4, triggers the ubiquitination and degradation of eEF1A on stalled ribosomes. Using a chemical genetic approach, we unveiled a signaling network comprising two E3 ligases, RNF14 and RNF25, which are required for eEF1A degradation. Quantitative proteomics revealed the RNF14 and RNF25-dependent ubiquitination of eEF1A and a discrete set of ribosomal proteins. The ribosome collision sensor GCN1 plays an essential role by engaging RNF14, which directly ubiquitinates eEF1A. The site-specific, RNF25-dependent ubiquitination of the ribosomal protein RPS27A/eS31 provides a second essential signaling input. Our findings illuminate a ubiquitin signaling network that monitors the ribosomal A site and promotes the degradation of stalled translation factors, including eEF1A and the termination factor eRF1.


Assuntos
Proteínas de Ligação a RNA , Transativadores , Proteínas de Transporte/metabolismo , Fatores de Alongamento de Peptídeos/genética , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Humanos , Células HeLa , Células HEK293 , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo
2.
Immunity ; 57(2): 271-286.e13, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301652

RESUMO

The immune system encodes information about the severity of a pathogenic threat in the quantity and type of memory cells it forms. This encoding emerges from lymphocyte decisions to maintain or lose self-renewal and memory potential during a challenge. By tracking CD8+ T cells at the single-cell and clonal lineage level using time-resolved transcriptomics, quantitative live imaging, and an acute infection model, we find that T cells will maintain or lose memory potential early after antigen recognition. However, following pathogen clearance, T cells may regain memory potential if initially lost. Mechanistically, this flexibility is implemented by a stochastic cis-epigenetic switch that tunably and reversibly silences the memory regulator, TCF1, in response to stimulation. Mathematical modeling shows how this flexibility allows memory T cell numbers to scale robustly with pathogen virulence and immune response magnitudes. We propose that flexibility and stochasticity in cellular decisions ensure optimal immune responses against diverse threats.


Assuntos
Linfócitos T CD8-Positivos , Células T de Memória , Epigênese Genética , Células Clonais , Memória Imunológica , Diferenciação Celular
3.
Cell ; 166(4): 963-976, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27477511

RESUMO

Pancreatic cancer is a deadly malignancy that lacks effective therapeutics. We previously reported that oncogenic Kras induced the redox master regulator Nfe2l2/Nrf2 to stimulate pancreatic and lung cancer initiation. Here, we show that NRF2 is necessary to maintain pancreatic cancer proliferation by regulating mRNA translation. Specifically, loss of NRF2 led to defects in autocrine epidermal growth factor receptor (EGFR) signaling and oxidation of specific translational regulatory proteins, resulting in impaired cap-dependent and cap-independent mRNA translation in pancreatic cancer cells. Combined targeting of the EGFR effector AKT and the glutathione antioxidant pathway mimicked Nrf2 ablation to potently inhibit pancreatic cancer ex vivo and in vivo, representing a promising synthetic lethal strategy for treating the disease.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Pancreáticas/metabolismo , Biossíntese de Proteínas , Animais , Comunicação Autócrina , Cisteína/metabolismo , Glutationa/metabolismo , Humanos , Camundongos , Organoides/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais
4.
Cell ; 160(1-2): 324-38, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25557080

RESUMO

Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and human pancreas tissues. Pancreatic organoids can be rapidly generated from resected tumors and biopsies, survive cryopreservation, and exhibit ductal- and disease-stage-specific characteristics. Orthotopically transplanted neoplastic organoids recapitulate the full spectrum of tumor development by forming early-grade neoplasms that progress to locally invasive and metastatic carcinomas. Due to their ability to be genetically manipulated, organoids are a platform to probe genetic cooperation. Comprehensive transcriptional and proteomic analyses of murine pancreatic organoids revealed genes and pathways altered during disease progression. The confirmation of many of these protein changes in human tissues demonstrates that organoids are a facile model system to discover characteristics of this deadly malignancy.


Assuntos
Carcinoma Ductal Pancreático/patologia , Modelos Biológicos , Técnicas de Cultura de Órgãos , Organoides/patologia , Neoplasias Pancreáticas/patologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Pâncreas/metabolismo , Pâncreas/patologia
5.
Nature ; 617(7959): 200-207, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020024

RESUMO

In all species, ribosomes synthesize proteins by faithfully decoding messenger RNA (mRNA) nucleotide sequences using aminoacyl-tRNA substrates. Current knowledge of the decoding mechanism derives principally from studies on bacterial systems1. Although key features are conserved across evolution2, eukaryotes achieve higher-fidelity mRNA decoding than bacteria3. In human, changes in decoding fidelity are linked to ageing and disease and represent a potential point of therapeutic intervention in both viral and cancer treatment4-6. Here we combine single-molecule imaging and cryogenic electron microscopy methods to examine the molecular basis of human ribosome fidelity to reveal that the decoding mechanism is both kinetically and structurally distinct from that of bacteria. Although decoding is globally analogous in both species, the reaction coordinate of aminoacyl-tRNA movement is altered on the human ribosome and the process is an order of magnitude slower. These distinctions arise from eukaryote-specific structural elements in the human ribosome and in the elongation factor eukaryotic elongation factor 1A (eEF1A) that together coordinate faithful tRNA incorporation at each mRNA codon. The distinct nature and timing of conformational changes within the ribosome and eEF1A rationalize how increased decoding fidelity is achieved and potentially regulated in eukaryotic species.


Assuntos
Bactérias , Biossíntese de Proteínas , Humanos , Bactérias/genética , Bactérias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Imagem Individual de Molécula , Microscopia Crioeletrônica , Ribossomos/genética , Ribossomos/metabolismo
6.
Nat Immunol ; 17(8): 956-65, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27376470

RESUMO

During T cell development, multipotent progenitors relinquish competence for other fates and commit to the T cell lineage by turning on Bcl11b, which encodes a transcription factor. To clarify lineage commitment mechanisms, we followed developing T cells at the single-cell level using Bcl11b knock-in fluorescent reporter mice. Notch signaling and Notch-activated transcription factors collaborate to activate Bcl11b expression irrespectively of Notch-dependent proliferation. These inputs work via three distinct, asynchronous mechanisms: an early locus 'poising' function dependent on TCF-1 and GATA-3, a stochastic-permissivity function dependent on Notch signaling, and a separate amplitude-control function dependent on Runx1, a factor already present in multipotent progenitors. Despite their necessity for Bcl11b expression, these inputs act in a stage-specific manner, providing a multitiered mechanism for developmental gene regulation.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Linfopoese/genética , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Linfócitos T/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Rastreamento de Células , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fator de Transcrição GATA3/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Repressoras/genética , Transdução de Sinais , Análise de Célula Única , Proteínas Supressoras de Tumor/genética
7.
Nature ; 592(7852): 54-59, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33790446

RESUMO

Three-dimensional (3D) printing1-9 has revolutionized manufacturing processes for electronics10-12, optics13-15, energy16,17, robotics18, bioengineering19-21 and sensing22. Downscaling 3D printing23 will enable applications that take advantage of the properties of micro- and nanostructures24,25. However, existing techniques for 3D nanoprinting of metals require a polymer-metal mixture, metallic salts or rheological inks, limiting the choice of material and the purity of the resulting structures. Aerosol lithography has previously been used to assemble arrays of high-purity 3D metal nanostructures on a prepatterned substrate26,27, but in limited geometries26-30. Here we introduce a technique for direct 3D printing of arrays of metal nanostructures with flexible geometry and feature sizes down to hundreds of nanometres, using various materials. The printing process occurs in a dry atmosphere, without the need for polymers or inks. Instead, ions and charged aerosol particles are directed onto a dielectric mask containing an array of holes that floats over a biased silicon substrate. The ions accumulate around each hole, generating electrostatic lenses that focus the charged aerosol particles into nanoscale jets. These jets are guided by converged electric-field lines that form under the hole-containing mask, which acts similarly to the nozzle of a conventional 3D printer, enabling 3D printing of aerosol particles onto the silicon substrate. By moving the substrate during printing, we successfully print various 3D structures, including helices, overhanging nanopillars, rings and letters. In addition, to demonstrate the potential applications of our technique, we printed an array of vertical split-ring resonator structures. In combination with other 3D-printing methods, we expect our 3D-nanoprinting technique to enable substantial advances in nanofabrication.

8.
Proc Natl Acad Sci U S A ; 120(52): e2308366120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38113261

RESUMO

Immune system threat detection hinges on T cells' ability to perceive varying peptide-major histocompatibility complex (pMHC) antigens. As the Erk and NFAT pathways link T cell receptor engagement to gene regulation, their signaling dynamics may convey information about pMHC inputs. To test this idea, we developed a dual reporter mouse strain and a quantitative imaging assay that, together, enable simultaneous monitoring of Erk and NFAT dynamics in live T cells over day-long timescales as they respond to varying pMHC inputs. Both pathways initially activate uniformly across various pMHC inputs but diverge only over longer (9+ h) timescales, enabling independent encoding of pMHC affinity and dose. These late signaling dynamics are decoded via multiple temporal and combinatorial mechanisms to generate pMHC-specific transcriptional responses. Our findings underscore the importance of long timescale signaling dynamics in antigen perception and establish a framework for understanding T cell responses under diverse contexts.


Assuntos
Ativação Linfocitária , Linfócitos T , Camundongos , Animais , Receptores de Antígenos de Linfócitos T , Antígenos/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Peptídeos/metabolismo , Complexo Principal de Histocompatibilidade , Percepção , Ligação Proteica
9.
Genes Dev ; 31(19): 1939-1957, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29066500

RESUMO

Disruption of the balanced modulation of reversible tyrosine phosphorylation has been implicated in the etiology of various human cancers, including breast cancer. Protein Tyrosine Phosphatase N23 (PTPN23) resides in chromosomal region 3p21.3, which is hemizygously or homozygously lost in some breast cancer patients. In a loss-of-function PTPome screen, our laboratory identified PTPN23 as a suppressor of cell motility and invasion in mammary epithelial and breast cancer cells. Now, our TCGA (The Cancer Genome Atlas) database analyses illustrate a correlation between low PTPN23 expression and poor survival in breast cancers of various subtypes. Therefore, we investigated the tumor-suppressive function of PTPN23 in an orthotopic transplantation mouse model. Suppression of PTPN23 in Comma 1Dß cells induced breast tumors within 56 wk. In PTPN23-depleted tumors, we detected hyperphosphorylation of the autophosphorylation site tyrosine in the SRC family kinase (SFK) FYN as well as Tyr142 in ß-catenin. We validated the underlying mechanism of PTPN23 function in breast tumorigenesis as that of a key phosphatase that normally suppresses the activity of FYN in two different models. We demonstrated that tumor outgrowth from PTPN23-deficient BT474 cells was suppressed in a xenograft model in vivo upon treatment with AZD0530, an SFK inhibitor. Furthermore, double knockout of FYN and PTPN23 via CRISPR/CAS9 also attenuated tumor outgrowth from PTPN23 knockout Cal51 cells. Overall, this mechanistic analysis of the tumor-suppressive function of PTPN23 in breast cancer supports the identification of FYN as a therapeutic target for breast tumors with heterozygous or homozygous loss of PTPN23.


Assuntos
Neoplasias da Mama/genética , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Tirosina Fosfatases não Receptoras/genética , Animais , Antineoplásicos/farmacologia , Benzodioxóis/farmacologia , Neoplasias da Mama/enzimologia , Sistemas CRISPR-Cas , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação/genética , Quinazolinas/farmacologia , Taxa de Sobrevida , beta Catenina/metabolismo
10.
Immunol Rev ; 300(1): 134-151, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33734444

RESUMO

Proper timing of gene expression is central to lymphocyte development and differentiation. Lymphocytes often delay gene activation for hours to days after the onset of signaling components, which act on the order of seconds to minutes. Such delays play a prominent role during the intricate choreography of developmental events and during the execution of an effector response. Though a number of mechanisms are sufficient to explain timing at short timescales, it is not known how timing delays are implemented over long timescales that may span several cell generations. Based on the literature, we propose that a class of cis-regulatory elements, termed "timing enhancers," may explain how timing delays are controlled over these long timescales. By considering chromatin as a kinetic barrier to state switching, the timing enhancer model explains experimentally observed dynamics of gene expression where other models fall short. In this review, we elaborate on features of the timing enhancer model and discuss the evidence for its generality throughout development and differentiation. We then discuss potential molecular mechanisms underlying timing enhancer function. Finally, we explore recent evidence drawing connections between timing enhancers and genetic risk for immunopathology. We argue that the timing enhancer model is a useful framework for understanding how cis-regulatory elements control the central dimension of timing in lymphocyte biology.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Diferenciação Celular , Elementos Facilitadores Genéticos/genética
11.
Gut ; 73(6): 941-954, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38262672

RESUMO

OBJECTIVE: The optimal therapeutic response in cancer patients is highly dependent upon the differentiation state of their tumours. Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer that harbours distinct phenotypic subtypes with preferential sensitivities to standard therapies. This study aimed to investigate intratumour heterogeneity and plasticity of cancer cell states in PDA in order to reveal cell state-specific regulators. DESIGN: We analysed single-cell expression profiling of mouse PDAs, revealing intratumour heterogeneity and cell plasticity and identified pathways activated in the different cell states. We performed comparative analysis of murine and human expression states and confirmed their phenotypic diversity in specimens by immunolabeling. We assessed the function of phenotypic regulators using mouse models of PDA, organoids, cell lines and orthotopically grafted tumour models. RESULTS: Our expression analysis and immunolabeling analysis show that a mucus production programme regulated by the transcription factor SPDEF is highly active in precancerous lesions and the classical subtype of PDA - the most common differentiation state. SPDEF maintains the classical differentiation and supports PDA transformation in vivo. The SPDEF tumour-promoting function is mediated by its target genes AGR2 and ERN2/IRE1ß that regulate mucus production, and inactivation of the SPDEF programme impairs tumour growth and facilitates subtype interconversion from classical towards basal-like differentiation. CONCLUSIONS: Our findings expand our understanding of the transcriptional programmes active in precancerous lesions and PDAs of classical differentiation, determine the regulators of mucus production as specific vulnerabilities in these cell states and reveal phenotype switching as a response mechanism to inactivation of differentiation states determinants.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Camundongos , Humanos , Muco/metabolismo , Mucoproteínas/metabolismo , Mucoproteínas/genética , Linhagem Celular Tumoral , Diferenciação Celular , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas/metabolismo , Proteínas/genética , Organoides/patologia , Organoides/metabolismo , Plasticidade Celular , Regulação Neoplásica da Expressão Gênica , Modelos Animais de Doenças , Proteínas Oncogênicas
12.
Emerg Infect Dis ; 30(6): 1173-1181, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781950

RESUMO

Understanding changes in the transmission dynamics of mpox requires comparing recent estimates of key epidemiologic parameters with historical data. We derived historical estimates for the incubation period and serial interval for mpox and contrasted them with pooled estimates from the 2022 outbreak. Our findings show the pooled mean infection-to-onset incubation period was 8.1 days for the 2022 outbreak and 8.2 days historically, indicating the incubation periods remained relatively consistent over time, despite a shift in the major mode of transmission. However, we estimated the onset-to-onset serial interval at 8.7 days using 2022 data, compared with 14.2 days using historical data. Although the reason for this shortening of the serial interval is unclear, it may be because of increased public health interventions or a shift in the mode of transmission. Recognizing such temporal shifts is essential for informed response strategies, and public health measures remain crucial for controlling mpox and similar future outbreaks.


Assuntos
Surtos de Doenças , Período de Incubação de Doenças Infecciosas , Mpox , Humanos , Mpox/epidemiologia , Mpox/história , Mpox/transmissão , Mpox/virologia , História do Século XXI , Saúde Global
13.
Anal Chem ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007441

RESUMO

G-quadruplex structures within the nuclear genome (nG4) is an important regulatory factor, while the function of G4 in the mitochondrial genome (mtG4) still needs to be explored, especially in human sperms. To gain a better understanding of the relationship between mtG4 and mitochondrial function, it is crucial to develop excellent probes that can selectively visualize and track mtG4 in both somatic cells and sperms. Herein, based on our previous research on purine frameworks, we attempted for the first time to extend the conjugated structure from the C-8 site of purine skeleton and discovered that the purine derivative modified by the C-8 aldehyde group is an ideal platform for constructing near-infrared probes with extremely large Stokes shift (>220 nm). Compared with the compound substituted with methylpyridine (PAP), the molecule substituted with methylthiazole orange (PATO) showed better G4 recognition ability, including longer emission (∼720 nm), more significant fluorescent enhancement (∼67-fold), lower background, and excellent photostability. PATO exhibited a sensitive response to mtG4 variation in both somatic cells and human sperms. Most importantly, PATO helped us to discover that mtG4 was significantly increased in cells with mitochondrial respiratory chain damage caused by complex I inhibitors (6-OHDA and rotenone), as well as in human sperms that suffer from oxidative stress. Altogether, our study not only provides a novel ideal molecular platform for constructing high-performance probes but also develops an effective tool for studying the relationship between mtG4 and mitochondrial function in both somatic cells and human sperms.

14.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36198846

RESUMO

PIWI proteins and Piwi-Interacting RNAs (piRNAs) are commonly detected in human cancers, especially in germline and somatic tissues, and correlate with poorer clinical outcomes, suggesting that they play a functional role in cancer. As the problem of combinatorial explosions between ncRNA and disease exposes gradually, new bioinformatics methods for large-scale identification and prioritization of potential associations are therefore of interest. However, in the real world, the network of interactions between molecules is enormously intricate and noisy, which poses a problem for efficient graph mining. Line graphs can extend many heterogeneous networks to replace dichotomous networks. In this study, we present a new graph neural network framework, line graph attention networks (LGAT). And we apply it to predict PiRNA disease association (GAPDA). In the experiment, GAPDA performs excellently in 5-fold cross-validation with an AUC of 0.9038. Not only that, it still has superior performance compared with methods based on collaborative filtering and attribute features. The experimental results show that GAPDA ensures the prospect of the graph neural network on such problems and can be an excellent supplement for future biomedical research.


Assuntos
Proteínas Argonautas , Neoplasias , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Neoplasias/genética
15.
Opt Express ; 32(7): 12405-12418, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571063

RESUMO

An innovative ultra-sensitive, dual-functional sensor employing a D-shaped microchannel photonic crystal fiber (PCF) for refractive index (RI) and temperature measurements is proposed and comprehensively investigated. Its high-sensitivity is achieved through the incorporation of gold (Au) and magnesium fluoride (MgF2) as plasmonic materials in the micro-rectangular channel. This configuration significantly enhances the interaction between the surface plasmon polaritons (SPPs) field and y-polarized evanescent field on external surfaces. Additionally, the integration of a temperature-sensitive fluid within the sensor allows for precise detection of temperature changes. Our simulations demonstrate a broad detection spectrum, covering RI values from 1.27 to 1.43 and temperatures ranging from 45°C to 100°C. The sensor achieves peak sensitivities of 31800nm/RIU for RI and 49 nm/°C for temperature. Besides, the sensor only has a cladding consisting of three air holes to enhance coupling and reduce the difficulty of preparation. Importantly, the sensor's performance remains robust against minor structural alterations in the PCF, indicating high fault tolerance. Given its high sensitivity, extensive detection range, and strong fabrication stability, this PCF-SPR sensor offers significant potential for applications in biochemical sensing and environmental monitoring.

16.
Ann Hematol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472362

RESUMO

Multiple myeloma (MM) stands as the second most prevalent hematological malignancy, constituting approximately 10% of all hematological malignancies. Current guidelines recommend upfront autologous stem cell transplantation (ASCT) for transplant-eligible MM patients. This study seeks to delineate factors influencing post-ASCT outcomes in MM patients. Our cohort comprised 150 MM patients from Taipei Veterans General Hospital, with progression-free survival (PFS) as the primary endpoint and overall survival (OS) as the secondary endpoint. A Cox proportional hazards model was employed to discern potential predictive factors for survival. ASCT age ≥ 65 (hazard ratio [HR] 1.94, 95% confidence interval [CI] 1.08-3.47) and the presence of extramedullary disease (HR 2.53, 95% CI 1.53-4.19) negatively impacted PFS. Conversely, treatment response ≥ VGPR before ASCT (HR 0.52, 95% CI 0.31-0.87) and total CD34+ cells collected ≥ 4 × 106 cells/kg on the first stem cell harvesting (HR 0.52, 95% CI 0.32-0.87) were positively associated with PFS. For OS, patients with ISS stage III (HR 2.06, 95% CI 1.05-4.04), the presence of extramedullary disease (HR 3.92, 95% CI 2.03-7.58), light chain ratio ≥ 100 before ASCT (HR 7.08, 95% CI 1.45-34.59), post-ASCT cytomegalovirus infection (HR 9.43, 95% CI 3.09-28.84), and a lower conditioning melphalan dose (< 140 mg/m2; HR 2.75, 95% CI 1.23-6.17) experienced shorter OS. In contrast, post-ASCT day + 15 absolute monocyte counts (D15 AMC) > 500/µl (HR 0.36, 95% CI 0.17-0.79) and post-ASCT day + 15 platelet counts (D15 PLT) > 80,000/µl (HR 0.48, 95% CI 0.24-0.94) were correlated with improved OS. Significantly, early PLT and AMC recovery on day + 15 predicting longer OS represents a novel finding not previously reported. Other factors also align with previous studies. Our study provides real-world insights for post-ASCT outcome prediction beyond clinical trials.

17.
Paediatr Perinat Epidemiol ; 38(2): 130-141, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38168744

RESUMO

BACKGROUND: Little is known about the long-term trends of preterm birth rates in China and their geographic variation by province. OBJECTIVES: To estimate the annual spatial-temporal distribution of preterm birth rates in China by province from 1990 to 2020. DATA SOURCES: We searched PubMed, EMBASE, Web of Science, CNKI, WANFANG and VIP from January 1990 to September 2023. STUDY SELECTION AND DATA EXTRACTION: Studies that provided data on preterm births in China after 1990 were included. Data were extracted following the Guidelines for Accurate and Transparent Health Estimates Reporting. SYNTHESIS: We assessed the quality of each survey using a 9-point checklist. We estimated the annual preterm birth risk by province using Bayesian multilevel logistic regression models considering potential socioeconomic, environmental, and sanitary predictors. RESULTS: Based on 634 survey data from 343 included studies, we found a gradual increase in the preterm birth risk in most provinces in China since 1990, with an average annual increase of 0.7% nationally. However, the preterm birth rates in Inner Mongolia, Hubei, and Fujian Province showed a decline, while those in Sichuan were quite stable since 1990. In 2020, the estimates of preterm birth rates ranged from 2.9% (95% Bayesian credible interval [BCI] 2.1, 3.8) in Inner Mongolia to 8.5% (95% BCI 6.6, 10.9) in Jiangxi, with the national estimate of 5.9% (95% BCI 4.3, 8.1). Specifically, some provinces were identified as high-risk provinces for either consistently high preterm birth rates (e.g. Jiangxi) or relatively large increases (e.g. Shanxi) since 1990. CONCLUSIONS: This study provides annual information on the preterm birth risk in China since 1990 and identifies high-risk provinces to assist in targeted control and intervention for this health issue.


Assuntos
Nascimento Prematuro , Feminino , Recém-Nascido , Humanos , Nascimento Prematuro/epidemiologia , Teorema de Bayes , China/epidemiologia , Coeficiente de Natalidade
18.
Inorg Chem ; 63(24): 11361-11368, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38815165

RESUMO

Herein, we report the synthesis of a flexible bis-cyclopentadienyl ligand L (the doubly deprotonated form of H2L (1,3-bis(2,4-di-tert-butylcyclopentadienyldimethylsilyl)benzene)), demonstrating its ability to stabilize a series of di-iron hydrido complexes. Notably, this ligand facilitates the isolation of an unprecedented anionic cyclopentadienyl ligand-supported di-iron trihydride complex, LFe2(µ-H)3Li(THF) (2), functioning as a synthon for the [Fe2(µ-H)3]- core and providing access to heterobimetallic complexes 4-6 with coinage metals.

19.
J Adv Nurs ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38586889

RESUMO

AIM: To examine the main effects and interaction effects of outcome expectations (e.g., anticipated satisfactory salary and benefits), nurse identity (a sense of membership in the nursing profession), and information-access efficiency of the electronic medical record system (how the system enables nurses to quickly retrieve the needed information) on nurses' retention. DESIGN: This study uses a cross-sectional survey and adopts proportionate random sampling to recruit a representative sample of nurses of a medical centre in Taiwan. METHODS: This study successfully obtained completed questionnaires from 430 nurses during December 2021 to January 2022. Data are analysed by using hierarchical regressions. RESULTS: Positive outcome expectations and identification as a member in the nursing profession are associated with retention. Information-access efficiency strengthens the link between outcome expectations and retention, while nurse identity weakens this link. CONCLUSION: Outcome expectations can help retain nurses, particularly those who perceive high levels of information-access efficiency and possess weak nurse identity. That is, outcome expectations have a complementary role with nurse identity in retaining nurses. IMPLICATIONS FOR THE PROFESSION: Nurse managers should devise means to build positive outcome expectations for nurses. In addition, either strengthening nurses' identification with the nursing profession or improving the information-access efficiency of the electronic medical system may also help retain nurses. IMPACT: This study examined how to transform outcome expectation to nurse retention, offering nurse managers to devise new means to retain nurses. REPORTING METHOD: STROBE statement was chosen as EQUATOR checklist. PATIENT OR PUBLIC CONTRIBUTION: No patient or public contribution.

20.
Int Nurs Rev ; 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38243697

RESUMO

AIM: To investigate whether education, tenure, being an advanced practice nurse, skill level, and time pressure impact perceptions of "having a place" and, further, turnover intentions. BACKGROUND: Nursing shortages persist worldwide. Nurses' turnover intentions are negatively related to their perceptions of "having a place" (i.e., the feeling that the nursing workplace is their territory). However, the sources of nurses' perceptions of the perception of "having a place" remain unknown. METHODS: Our research employed a cross-sectional and correlational design. This research was conducted at a large-scale hospital in northern Taiwan from December 2021 to January 2022. We used personnel data pertaining to 430 nurses as well as scales for time pressure, "having a place" and turnover intentions to assess nurses' intention to leave their place of employment. The inclusion criteria focused on full-time nurses who worked for the hospital under investigation. Most of our participants were women. The STROBE statement was used as the EQUATOR checklist (supplemental file). RESULTS: "Having a place" was positively related to educational level, tenure, and skill level, while being an advanced practice nurse was negatively associated with perceptions of "having a place," which in turn were negatively related to turnover intention among nurses. CONCLUSION: Our study is the first to examine the antecedents of nurses' perceptions of "having a place," which include education, tenure, and skill level. IMPLICATIONS FOR NURSING POLICY: Nursing policymakers could encourage nurses to pursue higher degrees and update their nursing skills while instilling perceptions of "having a place" in nurses with a brief tenure and advanced practice nurses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA