Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38982914

RESUMO

Synovial inflammation plays a key role in osteoarthritis (OA) pathogenesis. Fibroblast-like synoviocytes (FLSs) represent a distinct cell subpopulation within the synovium, and their unique phenotypic alterations are considered significant contributors to inflammation and fibrotic responses. The underlying mechanism by which acetyl-11-keto-ß-boswellic acid (AKBA) modulates FLS activation remains unclear. This study aims to assess the beneficial effects of AKBA through both in vitro and in vivo investigations. Network pharmacology evaluation is used to identify potential targets of AKBA in OA. We evaluate the effects of AKBA on FLSs activation in vitro and the regulatory role of AKBA on the Nrf2/HO-1 signaling pathway. ML385 (an Nrf2 inhibitor) is used to verify the binding of AKBA to its target in FLSs. We validate the in vivo efficacy of AKBA in alleviating OA using anterior cruciate ligament transection and destabilization of the medial meniscus (ACLT+DMM) in a rat model. Network pharmacological analysis reveals the potential effect of AKBA on OA. AKBA effectively attenuates lipopolysaccharide (LPS)-induced abnormal migration and invasion and the production of inflammatory mediators, matrix metalloproteinases (MMPs), and reactive oxygen species (ROS) in FLSs, contributing to the restoration of the synovial microenvironment. After treatment with ML385, the effect of AKBA on FLSs is reversed. In vivo studies demonstrate that AKBA mitigates synovial inflammation and fibrotic responses induced by ACLT+DMM in rats via activation of the Nrf2/HO-1 axis. AKBA exhibits theoretical potential for alleviating OA progression through the Nrf2/HO-1 pathway and represents a viable therapeutic candidate for this patient population.

2.
Acta Biochim Biophys Sin (Shanghai) ; 56(1): 82-95, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38013468

RESUMO

Osteoarthritis (OA) is a prevalent and chronic joint disease that affects the aging population, causing pain and disability. Macrophages in synovium are important mediators of synovial inflammatory activity and pathological joint pain. Previous studies have demonstrated the significant involvement of κ-opioid receptor (KOR) in the regulation of pain and inflammation. Our study reveals a significant reduction in synovial KOR expression among patients and mice with OA. Here, we find that KOR activation effectively inhibits the expressions of the LPS-induced-inflammatory cytokines TNF-α and IL-6 by inhibiting macrophage M1 phenotype. Mechanistically, KOR activation effectively suppresses the proinflammatory factor secretion of macrophages by inhibiting the translocation of NF-κB into the nucleus. Our animal experiments reveal that activation of KOR effectively alleviates knee pain and prevents synovitis progression in OA mice. Consistently, KOR administration suppresses the expressions of M1 macrophage markers and the NF-κB pathway in the synovium of the knee. Collectively, our study suggests that targeting KOR may be a viable strategy for treating OA by inhibiting synovitis and improving joint pain in affected patients.


Assuntos
Osteoartrite , Receptores Opioides kappa , Sinovite , Idoso , Animais , Humanos , Camundongos , Artralgia/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Dor/metabolismo , Receptores Opioides kappa/metabolismo , Sinovite/metabolismo
3.
Sensors (Basel) ; 24(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39066130

RESUMO

The hot spot temperature of transformer windings is an important indicator for measuring insulation performance, and its accurate inversion is crucial to ensure the timely and accurate fault prediction of transformers. However, existing studies mostly directly input obtained experimental or operational data into networks to construct data-driven models, without considering the lag between temperatures, which may lead to the insufficient accuracy of the inversion model. In this paper, a method for inverting the hot spot temperature of transformer windings based on the SA-GRU model is proposed. Firstly, temperature rise experiments are designed to collect the temperatures of the entire side and top of the transformer tank, top oil temperature, ambient temperature, the cooling inlet and outlet temperatures, and winding hot spot temperature. Secondly, experimental data are integrated, considering the lag of the data, to obtain candidate input feature parameters. Then, a feature selection algorithm based on mutual information (MI) is used to analyze the correlation of the data and construct the optimal feature subset to ensure the maximum information gain. Finally, Self-Attention (SA) is applied to optimize the Gate Recurrent Unit (GRU) network, establishing the GRU-SA model to perceive the potential patterns between output feature parameters and input feature parameters, achieving the precise inversion of the hot spot temperature of the transformer windings. The experimental results show that considering the lag of the data can more accurately invert the hot spot temperature of the windings. The inversion method proposed in this paper can reduce redundant input features, lower the complexity of the model, accurately invert the changing trend of the hot spot temperature, and achieve higher inversion accuracy than other classical models, thereby obtaining better inversion results.

4.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38400285

RESUMO

Infrared image processing is an effective method for diagnosing faults in electrical equipment, in which target device segmentation and temperature feature extraction are key steps. Target device segmentation separates the device to be diagnosed from the image, while temperature feature extraction analyzes whether the device is overheating and has potential faults. However, the segmentation of infrared images of electrical equipment is slow due to issues such as high computational complexity, and the temperature information extracted lacks accuracy due to the insufficient consideration of the non-linear relationship between the image grayscale and temperature. Therefore, in this study, we propose an optimized maximum between-class variance thresholding method (OTSU) segmentation algorithm based on the Gray Wolf Optimization (GWO) algorithm, which accelerates the segmentation speed by optimizing the threshold determination process using OTSU. The experimental results show that compared to the non-optimized method, the optimized segmentation method increases the threshold calculation time by more than 83.99% while maintaining similar segmentation results. Based on this, to address the issue of insufficient accuracy in temperature feature extraction, we propose a temperature value extraction method for infrared images based on the K-nearest neighbor (KNN) algorithm. The experimental results demonstrate that compared to traditional linear methods, this method achieves a 73.68% improvement in the maximum residual absolute value of the extracted temperature values and a 78.95% improvement in the average residual absolute value.

5.
J Nanobiotechnology ; 20(1): 128, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279148

RESUMO

Surgeons face great challenges in acquiring high-performance imaging because fluorescence probes with desired thermal stability remains rare. Here, hybrid lead sulfide/zinc sulfide quantum dots (PbS/ZnS QDs) nanostructures emitting in the long-wavelength end of the second near-infrared (NIR-IIb) window were synthesized and conjugated with Ribonuclease-A (RNase A). Such formed RNase A@PbS/ZnS QDs exhibited strong NIR IIb fluorescence and thermal stability, as supported by the photoluminescent emission assessment at different temperatures. This will allow the RNase A@PbS/ZnS QDs to provide stable fluorescence signals for long-time intraoperative imaging navigation, despite often happened, undesirable thermal accumulation in vivo. Compared to NIR-IIa fluorescence imaging, NIR-IIb vascular fluorescence imaging achieved larger penetration depth, higher signal/background ratios and nearly zero endogenous tissue autofluorescence. Moreover, these QDs illustrate the reliability during the real-time and long-time precise assessment of flap perfusion by clearly visualizing microvasculature map. These findings contribute to intraoperative imaging navigation with higher precision and lower risk.


Assuntos
Pontos Quânticos , Microvasos , Pontos Quânticos/química , Reprodutibilidade dos Testes , Ribonuclease Pancreático , Ribonucleases , Sulfetos , Compostos de Zinco
6.
Pharmacol Res ; 174: 105967, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34740817

RESUMO

Osteoporosis (OP) is characterized by decreased trabecular bone volume and microarchitectural deterioration in the medullary cavity. Urolithin A (UA) is a biologically active metabolite generated by the gut microbiota. UA is the measurable product considered the most relevant urolithin as the final metabolic product of polyphenolic compounds. Considering that catabolic effects mediated by the intestinal microbiota are highly involved in pathological bone disorders, exploring the biological influence and molecular mechanisms by which UA alleviates OP is crucial. Our study aimed to investigate the effect of UA administration on OP progression in the context of estrogen deficiency-induced bone loss. The in vivo results indicated that UA effectively reduced ovariectomy-induced systemic bone loss. In vitro, UA suppressed Receptor Activator for Nuclear Factor-κB Ligand (RANKL)-triggered osteoclastogenesis in a concentration-dependent manner. Signal transduction studies and sequencing analysis showed that UA significantly decreased the expression of inflammatory cytokines (e.g., IL-6 and TNF-α) in osteoclasts. Additionally, attenuation of inflammatory signaling cascades inhibited the NF-κB-activated NOD-like receptor signaling pathway, which eventually led to decreased cytoplasmic secretion of IL-1ß and IL-18 and reduced expression of pyroptosis markers (NLRP3, GSDMD, and caspase-1). Consistent with this finding, an NLRP3 inflammasome inhibitor (MCC950) was employed to treat OP, and modulation of pyroptosis was found to ameliorate osteoclastogenesis and bone loss in ovariectomized (OVX) mice, suggesting that UA suppressed osteoclast formation by regulating the inflammatory signal-dependent pyroptosis pathway. Conceivably, UA administration may be a safe and promising therapeutic strategy for osteoclast-related bone diseases such as OP.


Assuntos
Anti-Inflamatórios/uso terapêutico , Cumarínicos/uso terapêutico , Osteoporose Pós-Menopausa/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Catepsina K/genética , Catepsina K/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/farmacologia , Citocinas/genética , Citocinas/metabolismo , Feminino , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/metabolismo , Piroptose/efeitos dos fármacos , Ligante RANK/genética , Ligante RANK/farmacologia , Células RAW 264.7 , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
7.
Cell Biol Toxicol ; 37(1): 85-96, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33099657

RESUMO

Synovial mesenchymal stem cells (SMSCs) have the potential to attenuate osteoarthritis (OA)-induced injury. The role and mechanism of SMSC-derived exosomes (SMSC-Exos), pivotal paracrine factors of stem cells, in OA-associated injury remain unclear. We aimed to confirm the effect of SMSC-Exos with specific modifications on OA-induced damage and to investigate the potential molecular mechanisms. Exosomes derived from miR-155-5p-overexpressing SMSCs (SMSC-155-5p-Exos) and SMSCs (SMSC-Exos) were isolated and characterized. CCK-8, Transwell, and Western blot analyses were used to detect proliferation, migration, extracellular matrix (ECM) secretion, and apoptosis of osteoarthritic chondrocytes. The therapeutic effect of exosomes in a mouse model of OA was examined using immunohistochemical staining and OARSI scores. SPSS 17.0 and GraphPad software were used for all statistical analyses in this study. The SMSC-Exos enhanced the proliferation and migration and inhibited the apoptosis of osteoarthritic chondrocytes but had no effect on ECM secretion. The miR-155-5p-overexpressing exosomes showed common characteristics of exosomes in vitro and further promoted ECM secretion by targeting Runx2. Thus, the SMSC-155-5p-Exos promoted proliferation and migration, suppressed apoptosis and enhanced ECM secretion of osteoarthritic chondrocytes, and effectively prevented OA in a mouse model. In addition, overexpression of Runx2 partially reversed the effect of the SMSC-155-5p-Exos on osteoarthritic chondrocytes. Given the insufficient effect of the SMSC-Exos on the ECM secretion of osteoarthritic chondrocytes, we modified the SMSM-Exos and demonstrated that the SMSC-155-5p-Exos could prevent OA. Exosomes derived from modified SMSCs may be a new treatment strategy to prevent OA. Graphical abstract.


Assuntos
Apoptose , Condrócitos/patologia , Exossomos/metabolismo , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteoartrite/prevenção & controle , Membrana Sinovial/patologia , Animais , Sequência de Bases , Movimento Celular , Proliferação de Células , Condrócitos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Exossomos/ultraestrutura , Perfilação da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Osteoartrite/patologia
8.
Bioorg Chem ; 113: 104978, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34052737

RESUMO

Osteoarthritis (OA) is a chronic disease featured by joint hyperplasia, deterioration of articular cartilage, and progressive degeneration. Abnormal expression of microRNAs (miRNAs) has been found to be implicated in the pathological process of OA. In this study, the role of miR-361-5p transferred by exosomes derived from human bone mesenchymal stem cells (hBMSCs) in OA was investigated. The expression of Asp-Glu-Ala-Asp-box polypeptide 20 (DDX20) and miR-361-5p in interleukin-1ß (IL-1ß)-treated chondrocytes was determined by reverse transcription quantitative polymerase chain reaction. DDX20 was knocked down by transfection of short hairpin RNA targeting DDX20, and the effects of DDX20 downregulation on IL-1ß-induced damage of chondrocytes were detected. The interaction between DDX20 and miR-361-5p was tested by luciferase report assay. hBMSCs-derived exosomes loaded with miR-361-5p were co-incubated with chondrocytes followed by detection of cell viability, proliferation and inflammatory response. An OA rat model was established to further explore the role of miR-361-5p in vivo. Western blot, luciferase reporter and immunofluorescence staining assays were used to evaluate the activation of the nuclear factor kappa-B (NF-κB) signaling pathway. We found that DDX20 was upregulated, while miR-361-5p was underexpressed in IL-1ß-treated chondrocytes. Downregulation of DDX20 inhibits levels of matrix metalloproteinases (MMPs) and suppresses inflammation induced by IL-1ß. Mechanistically, miR-361-5p was verified to directly target DDX20. In addition, hBMSC-derived exosomes-transferred miR-361-5p alleviates chondrocyte damage and inhibits the NF-κB signaling pathway via targeting DDX20. Inhibition of NF-κB signaling reverses the effect of overexpressed DDX20 on IL-1ß-induced chondrocyte damage. Moreover, exosomal miR-361-5p alleviates OA damage in vivo. Overall, hBMSC-derived exosomal miR-361-5p alleviates OA damage by targeting DDX20 and inactivating the NF-κB signaling pathway.


Assuntos
Proteína DEAD-box 20/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Animais , Modelos Animais de Doenças , Humanos , MicroRNAs/genética , Ratos , Ratos Wistar , Transdução de Sinais
9.
J Cell Physiol ; 235(5): 4954-4964, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31663128

RESUMO

Human urine-derived stem cells (hUSCs) serve as favorable candidates for bone transplants due to their efficient proliferative and multipotent differentiation abilities, as well as the capacity to secrete a variety of vasoactive agents to facilitate tissue engineering. The present study aimed to explore the role of focal adhesion kinase (FAK) in bone morphogenetic protein 2 (BMP2)-induced osteogenic differentiation of hUSCs and to investigate the underlying mechanism. The degree of osteogenic differentiation and the correlated signals, following BMP2 overexpression and siRNA-mediated silencing of FAK, were determined in vitro. Moreover, hUSCs induced bone formation in a rat model with cranial defects, in vivo. Our findings revealed that alkaline phosphatase production, calcium deposits, osteocalcin and osteopontin expression, and bone formation were upregulated in vitro and in vivo following BMP2-induced osteogenic differentiation, and AMPK and Wnt signaling pathway activation by FAK could effectively regulate BMP2-enhanced osteogenic differentiation of hUSCs. Taken together, these findings indicated that FAK could mediate BMP2-enhanced osteogenic differentiation of hUSCs through activating adenosine 5'-monophosphate-activated protein kinase and Wnt signaling pathways.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular/efeitos dos fármacos , Quinase 1 de Adesão Focal/metabolismo , Osteogênese/efeitos dos fármacos , Crânio/enzimologia , Células-Tronco/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Remodelação Óssea , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quinase 1 de Adesão Focal/genética , Humanos , Hidrogéis , Ratos , Crânio/diagnóstico por imagem , Crânio/fisiopatologia , Transplante de Células-Tronco , Células-Tronco/enzimologia , Alicerces Teciduais , Urina/citologia
10.
J Cell Biochem ; 121(4): 2851-2863, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31680322

RESUMO

Synovial mesenchymal stem cells (SMSCs) with high proliferation and multi differentiation ability, and low immunogenicity have attracted research attention for their potential application in tissue engineering. Once their ability of osteogenesis is strengthened, it will be of practical value to apply the SMSCs in the field of bone regeneration. The current study aimed to investigate the osteogenic characteristics of SMSCs induced by bone morphogenetic protein 9 (BMP9) both in vitro and in vivo and to elucidate the mechanism underlying these characteristics. Specifically, different BMPs were assessed to determine the protein that would be the most favorable for stimulating osteogenic differentiation of SMSCs following their separation. The BMP9-enhanced osteogenesis of SMSCs was fully investigated in vitro and in vivo, and the c-Jun N-terminal kinase (JNK)/Smad2/3 signaling pathway stimulated by BMP9 was further explored. Our data suggested that BMP9 could significantly promote gene and protein expression of runt-related transcription factor 2, alkaline phosphatase, osteopontin, and osteocalcin, and SP600125, a JNK-specific inhibitor, could effectively decrease this tendency. Similar results were also confirmed in rats with cranial defects. In conclusion, our study indicated that BMP9 promotes bone formation both in vitro and in vivo possibly by activating the JNK/Smad2/3 signaling pathway.


Assuntos
Fator 2 de Diferenciação de Crescimento/metabolismo , MAP Quinase Quinase 4/metabolismo , Osteogênese , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Animais , Antracenos/farmacologia , Diferenciação Celular , Proliferação de Células , Separação Celular , Masculino , Células-Tronco Mesenquimais/citologia , Fenótipo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Membrana Sinovial/citologia , Engenharia Tecidual/métodos
11.
BMC Musculoskelet Disord ; 20(1): 349, 2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31351472

RESUMO

BACKGROUND: Female patients are more likely to have tendon injuries than males, especially those who has a higher concentration of relaxin. Previous studies have demonstrated that relaxin attenuates extracellular matrix (ECM) formation. However, the mechanism of relaxin on tendon repair remains unclear. We hypothesize that relaxin inhibits tendon healing by disrupting collagen synthesis. METHODS: A patellar tendon window defect model was established using Sprague-Dawley rats. The center of the patellar tendon was removed from the patella distal apex and inserted to the tibia tuberosity in width of 1 mm. Then, the rats were injected with saline (0.2 µg/kg/day) or relaxin (0.2 µg/kg/day) for two and four weeks, which was followed by biomechanical analysis and histological and histochemical examination. RESULTS: Mechanical results indicated that relaxin induces a significant decrease in tear resistance, stiffness, and Young's modulus compared to those rats without relaxin treatment. In addition, it was shown that relaxin activates relaxin family peptide receptor 1(RXFP1), disturbs the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteases (TIMPs), and reduces the deposition of collagen in injury areas. CONCLUSIONS: Relaxin impairs tendon healing in rats. Also, relaxin might lead to tendon injury more commonly for females than males.


Assuntos
Colágeno/biossíntese , Ligamento Patelar/lesões , Relaxina/administração & dosagem , Traumatismos dos Tendões/patologia , Cicatrização/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Humanos , Injeções Subcutâneas , Masculino , Ligamento Patelar/patologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Fatores Sexuais
12.
Front Med (Lausanne) ; 11: 1292473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38695024

RESUMO

Osteoarthritis (OA) is distinguished by pathological alterations in the synovial membrane, articular cartilage, and subchondral bone, resulting in physical symptoms such as pain, deformity, and impaired mobility. Numerous research studies have validated the effectiveness of low-intensity pulsed ultrasound (LIPUS) in OA treatment. The periodic mechanical waves generated by LIPUS can mitigate cellular ischemia and hypoxia, induce vibration and collision, produce notable thermal and non-thermal effects, alter cellular metabolism, expedite tissue repair, improve nutrient delivery, and accelerate the healing process of damaged tissues. The efficacy and specific mechanism of LIPUS is currently under investigation. This review provides an overview of LIPUS's potential role in the treatment of OA, considering various perspectives such as the synovial membrane, cartilage, subchondral bone, and tissue engineering. It aims to facilitate interdisciplinary scientific research and further exploration of LIPUS as a complementary technique to existing methods or surgery. Ongoing research is focused on determining the optimal dosage, frequency, timing, and treatment strategy of LIPUS for OA. Additional research is required to clarify the precise mechanism of action and potential impacts on cellular, animal, and human systems prior to its integration into therapeutic applications.

13.
Acta Biomater ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38997077

RESUMO

In situ mesenchymal stem cells (MSCs) regenerative therapy holds promising potential for treating osteoarthritis. However, MSCs engraftment and intra-articular inflammation limit the therapeutic efficacy of this approach. This study introduces porous microspheres (PMs) composed of aldehyde-modified poly(lactic-co-glycolic acid), that encapsulate platelet derived growth factor-AB and kartogenin. Metformin (Met) is also incorporated onto the microsphere through a Schiff base reaction to create PMs@Met. In vitro, in vivo and ex experiments revealed that PMs@Met can be injected into the joint cavity, effectively recruiting endogenous MSCs in situ. This approach creates a favorable environment for MSCs proliferation. It also controls the intra-articular inflammatory environment by modulating the polarization of synovial macrophages, ultimately promoting cartilage repair. In summary, our study presents an innovative tissue engineering strategy for the treatment of osteoarthritis-induced articular cartilage injuries. STATEMENT OF SIGNIFICANCE: Cell therapy using autologous mesenchymal stem cells (MSCs) has potential to slow the progression of osteoarthritis (OA). Nonetheless, there are some disadvantages to adopting in situ MSCs therapy, including difficulties with MSC engraftment into cartilage-deficient regions, the effect of intra-articular inflammation on MSC therapeutic efficacy, and attaining selective chondrogenic MSC differentiation. We created injectable PLGA microspheres (PMs) that were loaded with PDGF-AB and KGN. Metformin was bonded to the surface of microspheres using a Schiff base reaction. The microspheres can recruit intra-articular MSCs and encourage their development into chondrocytes. The microspheres actively modulate the inflammatory joint environment by altering synovial macrophage polarization, thereby supporting MSCs in effective cartilage treatment. To summarize, microspheres hold great potential in the treatment of OA.

14.
Acta Biomater ; 179: 220-233, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554890

RESUMO

An effective treatment for the irregular partial-thickness cartilage defect in the early stages of osteoarthritis (OA) is lacking. Cartilage tissue engineering is effective for treating full-thickness cartilage defects with limited area. In this study, we designed an injectable multifunctional poly(lactic-co-glycolic acid) (PLGA) microsphere to repair partial-thickness cartilage defects. The microsphere was grafted with an E7 peptide after loading the microsphere with kartogenin (KGN) and modifying the outer layer through dopamine self-polymerization. The microsphere could adhere to the cartilage defect, recruit synovial mesenchymal stem cells (SMSCs) in situ, and stimulate their differentiation into chondrocytes after injection into the articular cavity. Through in vivo and in vitro experiments, we demonstrated the ability of multifunctional microspheres to adhere to cartilage matrix, recruit SMSCs, and promote their differentiation into cartilage. Following treatment, the cartilage surface of the model group with partial-thickness cartilage defect showed smooth recovery, and the glycosaminoglycan content remained normal; the untreated control group showed significant progression of OA. The microsphere, a framework for cartilage tissue engineering, promoted the expression of SMSCs involved in cartilage repair while adapting to cell migration and growth. Thus, for treating partial-thickness cartilage defects in OA, this innovative carrier system based on stem cell therapy can potentially improve therapeutic outcomes. STATEMENT OF SIGNIFICANCE: Mesenchymal stem cells (MSCs) therapy is effective in the repair of cartilage injury. However, because of the particularity of partial-thickness cartilage injury, it is difficult to recruit enough seed cells in situ, and there is a lack of suitable scaffolds for cell migration and growth. Here, we developed polydopamine surface-modified PLGA microspheres (PMS) containing KGN and E7 peptides. The adhesion ability of the microspheres is facilitated by the polydopamine layer wrapped in them; thus, the microspheres can adhere to the injured cartilage and recruit MSCs, thereby promoting their differentiation into chondrocytes and accomplishing cartilage repair. The multifunctional microspheres can be used as a safe and potential method to treat partial-thickness cartilage defects in OA.


Assuntos
Anilidas , Células-Tronco Mesenquimais , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Coelhos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Diferenciação Celular/efeitos dos fármacos , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Cartilagem Articular/patologia , Ácido Poliglicólico/química , Ácido Láctico/química , Injeções , Matriz Extracelular/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Engenharia Tecidual/métodos
16.
Adv Healthc Mater ; 13(3): e2302327, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37947298

RESUMO

Stem cell tissue engineering is a potential treatment for osteoarthritis. However, the number of stem cells that can be delivered, loss of stem cells during injection, and migration ability of stem cells limit applications of traditional stem cell tissue engineering. Herein, kartogenin (KGN)-loaded poly(lactic-co-glycolic acid) (PLGA) porous microspheres is first engineered via emulsification, and then anchored with chitosan through the amidation reaction to develop a new porous microsphere (PLGA-CS@KGN) as a stem cell expansion vector. Following 3D co-culture of the PLGA-CS@KGN carrier with mesenchymal stem cells (MSCs), the delivery system is injected into the capsule cavity in situ. In vivo and in vitro experiments show that PLGA-CS microspheres have a high cell-carrying capacity up to 1 × 104 mm-3 and provide effective protection of MSCs to promote their controlled release in the osteoarthritis microenvironment. Simultaneously, KGN loaded inside the microspheres effectively cooperated with PLGA-CS to induce MSCs to differentiate into chondrocytes. Overall, these findings indicate that PLGA-CS@KGN microspheres held high cell-loading ability, adapt to the migration and expansion of cells, and promote MSCs to express markers associated with cartilage repair. Thus, PLGA-CS@KGN can be used as a potential stem cell carrier for enhancing stem cell therapy in osteoarthritis treatment.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Microesferas , Ácido Poliglicólico , Ácido Láctico , Porosidade , Conservação dos Recursos Naturais , Regeneração , Células-Tronco , Osteoartrite/terapia
17.
Regen Biomater ; 11: rbae007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414798

RESUMO

Tendinopathy is a common disorder that causes local dysfunction and reduces quality of life. Recent research has indicated that alterations in the inflammatory microenvironment play a vital role in the pathogenesis of tendinopathy. Herein, injectable methacrylate gelatin (GelMA) microspheres (GM) were fabricated and loaded with heparin-dopamine conjugate (HDC) and hepatocyte growth factor (HGF). GM@HDC@HGF were designed to balance the inflammatory microenvironment by inhibiting oxidative stress and inflammation, thereby regulating extracellular matrix (ECM) metabolism and halting tendon degeneration. Combining growth factors with heparin was expected to improve the encapsulation rate and maintain the long-term efficacy of HGF. In addition, the catechol groups on dopamine have adhesion and antioxidant properties, allowing potential attachment at the injured site, and better function synergized with HGF. GM@HDC@HGF injected in situ in rat Achilles tendinopathy (AT) models significantly down-regulated oxidative stress and inflammation, and ameliorated ECM degradation. In conclusion, the multifunctional platform developed presents a promising alternative for the treatment of tendinopathy.

18.
Sports Med Health Sci ; 6(2): 200-203, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38708321

RESUMO

Exercise prescriptions play a vital role in the prevention and treatment of chronic diseases. A consensus regarding exercise prescription is important for physical health. The "Consensus statement of Chinese experts on exercise prescription" (hereinafter referred to as "Expert Consensus") divides exercise prescription into two categories: fitness exercise prescription and medical exercise prescription. Traditional Chinese fitness exercises, exercise risk, exercise prescription, and basic precautions for exercise prescription are explained.

19.
Int J Biol Macromol ; 272(Pt 2): 132830, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825264

RESUMO

Artificial graft serves as the primary grafts used in the clinical management of sports-related injuries. Until now, optimizing its graft-host integration remains a great challenge due to the excessive inflammatory response during the inflammatory phase, coupled with an absence of tissue-inductive capacity during the regeneration phase. Here, a multi-layered regenerated silk fibroin (RSF) coating loaded with curcumin (Cur) and Zn2+ on the surface of the PET grafts (Cur@Zn2+@PET) was designed and fabricated for providing time-matched regulation specifically tailored to address issues arising at both inflammatory and regeneration phases, respectively. The release of Cur and Zn2+ from the Cur@Zn2+@PET followed a time-programmed pattern in vitro. Specifically, cellular assays revealed that Cur@Zn2+@PET initially released Cur during the inflammatory phase, thereby markedly inhibit the expression of inflammatory cytokines TNF-a and IL-1ß. Meanwhile, a significant release of Zn2+ was major part during the regeneration phase, serving to induce the osteogenic differentiation of rBMSC. Furthermore, rat model of anterior cruciate ligament reconstruction (ACLR) showed that through time-programmed drug release, Cur@Zn2+@PET could suppress the formation of fibrous interface (FI) caused by inflammatory response, combined with significant new bone (NB) formation during regeneration phase. Consequently, the implementation of the Cur@Zn2+@PET characterized by its time-programmed release patterns hold considerable promise for improving graft-host integration for sports-related injuries.


Assuntos
Curcumina , Fibroínas , Zinco , Curcumina/farmacologia , Curcumina/química , Animais , Zinco/química , Zinco/farmacologia , Ratos , Fibroínas/química , Fibroínas/farmacologia , Liberação Controlada de Fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Masculino , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley
20.
Sci Rep ; 14(1): 17553, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080459

RESUMO

Osteoarthritis (OA) is a chronic disease due to the deterioration of cartilage structure and function, involving the progressive degradation of the cartilage extracellular matrix. Cathepsins, lysosomal cysteine proteases, play pivotal roles in various biological and pathological processes, particularly in protein degradation. Excess cathepsins levels are reported to contribute to the development of OA. However, the causal relationship between the cathepsin family and knee and hip OA remains uncertain. Therefore, this study utilized bidirectional Mendelian Randomization (MR) analyses to explore this causal association. Our results indicated that elevated serum levels of cathepsin O increase the overall risk of knee OA, while increased serum levels of cathepsin H enhance the risk of hip OA. Conversely, the reverse MR analyses did not reveal a reverse causal relationship between them. In summary, OA in different anatomical locations may genetically result from pathological elevations in different serum cathepsin isoforms, which could be utilized as diagnostic and therapeutic targets in clinical practice.


Assuntos
Catepsinas , Análise da Randomização Mendeliana , Osteoartrite do Quadril , Osteoartrite do Joelho , Humanos , Osteoartrite do Quadril/genética , Osteoartrite do Quadril/sangue , Osteoartrite do Quadril/diagnóstico , Catepsinas/sangue , Catepsinas/genética , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/sangue , Osteoartrite do Joelho/diagnóstico , Predisposição Genética para Doença , Feminino , Masculino , Polimorfismo de Nucleotídeo Único , Biomarcadores/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA