Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 20(5): 3271-3277, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32298117

RESUMO

Exotic quantum phenomena have been demonstrated in recently discovered intrinsic magnetic topological insulator MnBi2Te4. At its two-dimensional limit, the quantum anomalous Hall effect and axion insulator state were observed in odd and even layers of MnBi2Te4, respectively. Here, we employ low-temperature scanning tunneling microscopy to study the electronic properties of MnBi2Te4. The quasiparticle interference patterns indicate that the electronic structures on the topmost layer of MnBi2Te4 are different from those of the expected out-of-plane A-type antiferromagnetic phase. The topological surface states may be embedded in deeper layers beneath the topmost surface. Such novel electronic structure is presumably related to the modification of crystalline structure during sample cleaving and reorientation of the magnetic moment of Mn atoms near the surface. Mn dopants substituted at the Bi site on the second atomic layer are observed. The electronic structures fluctuate at atomic scale on the surface, which can affect the magnetism of MnBi2Te4.

2.
Phys Rev Lett ; 124(4): 047003, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32058786

RESUMO

We investigate the spatial and doping evolutions of the superconducting properties of trilayer cuprate Bi_{2}Sr_{2}Ca_{2}Cu_{3}O_{10+δ} by using scanning tunneling microscopy and spectroscopy. Both the superconducting coherence peak and gap size exhibit periodic variations with structural supermodulation, but the effect is much more pronounced in the underdoped regime than at optimal doping. Moreover, a new type of tunneling spectrum characterized by two superconducting gaps emerges with increasing doping, and the two-gap features also correlate with the supermodulation. We propose that the interaction between the inequivalent outer and inner CuO_{2} planes is responsible for these novel features that are unique to trilayer cuprates.

3.
Phys Rev Lett ; 125(23): 237005, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33337206

RESUMO

We use scanning tunneling microscopy to investigate Bi_{2}Sr_{2}Ca_{2}Cu_{3}O_{10+δ} trilayer cuprates from the optimally doped to overdoped regime. We find that the two distinct superconducting gaps from the inner and outer CuO_{2} planes both decrease rapidly with doping, in sharp contrast to the nearly constant T_{C}. Spectroscopic imaging reveals the absence of quasiparticle interference in the antinodal region of overdoped samples, showing an opposite trend to that in single- and double-layer compounds. We propose that the existence of two types of inequivalent CuO_{2} planes and the intricate interaction between them are responsible for these anomalies in trilayer cuprates.

4.
Nat Commun ; 15(1): 4939, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858381

RESUMO

The microscopic mechanism for the disappearance of superconductivity in overdoped cuprates is still under heated debate. Here we use scanning tunneling spectroscopy to investigate the evolution of quasiparticle interference phenomenon in Bi2Sr2CuO6+δ over a wide range of hole densities. We find that when the system enters the overdoped regime, a peculiar quasiparticle interference wavevector with arc-like pattern starts to emerge even at zero bias, and its intensity grows with increasing doping level. Its energy dispersion is incompatible with the octet model for d-wave superconductivity, but is highly consistent with the scattering interference of gapless normal carriers. The gapless quasiparticles are mainly located near the antinodes and are independent of temperature, consistent with the disorder scattering mechanism. We propose that a branch of normal fluid emerges from the pair-breaking scattering between flat antinodal bands in the quantum ground state, which is the primary cause for the reduction of superfluid density and suppression of superconductivity in overdoped cuprates.

5.
Rev Sci Instrum ; 89(4): 043704, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29716308

RESUMO

We report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-field microwave imaging with small distance modulation.

6.
Sci Bull (Beijing) ; 63(13): 825-830, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36658961

RESUMO

Cr2Ge2Te6 is an intrinsic ferromagnetic semiconductor with van der Waals type layered structure, thus represents a promising material for novel electronic and spintronic devices. Here we combine scanning tunneling microscopy and first-principles calculations to investigate the electronic structure of Cr2Ge2Te6. Tunneling spectroscopy reveals a surprising large energy level shift and change of energy gap size across the ferromagnetic to paramagnetic phase transition, as well as a peculiar double-peak electronic state on the Cr-site defect. These features can be quantitatively explained by density functional theory calculations, which uncover a close relationship between the electronic structure and magnetic order. These findings shed important new lights on the microscopic electronic structure and origin of magnetic order in Cr2Ge2Te6.

7.
Adv Mater ; 28(30): 6386-90, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27166762

RESUMO

The evolution of the quantum anomalous Hall effect with the thickness of Cr-doped (Bi,Sb)2 Te3 magnetic topological insulator films is studied, revealing how the effect is caused by the interplay of the surface states, band-bending, and ferromagnetic exchange energy. Homogeneity in ferromagnetism is found to be the key to high-temperature quantum anomalous Hall material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA