Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 46(4): 675-689, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28423341

RESUMO

Activated T cells produce reactive oxygen species (ROS), which trigger the antioxidative glutathione (GSH) response necessary to buffer rising ROS and prevent cellular damage. We report that GSH is essential for T cell effector functions through its regulation of metabolic activity. Conditional gene targeting of the catalytic subunit of glutamate cysteine ligase (Gclc) blocked GSH production specifically in murine T cells. Gclc-deficient T cells initially underwent normal activation but could not meet their increased energy and biosynthetic requirements. GSH deficiency compromised the activation of mammalian target of rapamycin-1 (mTOR) and expression of NFAT and Myc transcription factors, abrogating the energy utilization and Myc-dependent metabolic reprogramming that allows activated T cells to switch to glycolysis and glutaminolysis. In vivo, T-cell-specific ablation of murine Gclc prevented autoimmune disease but blocked antiviral defense. The antioxidative GSH pathway thus plays an unexpected role in metabolic integration and reprogramming during inflammatory T cell responses.


Assuntos
Glutamato-Cisteína Ligase/deficiência , Glutationa/metabolismo , Inflamação/metabolismo , Linfócitos T/metabolismo , Animais , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Metabolismo Energético/genética , Glutamato-Cisteína Ligase/genética , Glutamina/metabolismo , Glicólise , Immunoblotting , Inflamação/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFATC/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo
2.
Mol Cell ; 62(1): 121-36, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26949039

RESUMO

HECT-family E3 ligases ubiquitinate protein substrates to control virtually every eukaryotic process and are misregulated in numerous diseases. Nonetheless, understanding of HECT E3s is limited by a paucity of selective and potent modulators. To overcome this challenge, we systematically developed ubiquitin variants (UbVs) that inhibit or activate HECT E3s. Structural analysis of 6 HECT-UbV complexes revealed UbV inhibitors hijacking the E2-binding site and activators occupying a ubiquitin-binding exosite. Furthermore, UbVs unearthed distinct regulation mechanisms among NEDD4 subfamily HECTs and proved useful for modulating therapeutically relevant targets of HECT E3s in cells and intestinal organoids, and in a genetic screen that identified a role for NEDD4L in regulating cell migration. Our work demonstrates versatility of UbVs for modulating activity across an E3 family, defines mechanisms and provides a toolkit for probing functions of HECT E3s, and establishes a general strategy for systematic development of modulators targeting families of signaling proteins.


Assuntos
Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Domínio Catalítico , Linhagem Celular , Movimento Celular , Cães , Células HCT116 , Humanos , Células Madin Darby de Rim Canino , Modelos Moleculares , Organoides/citologia , Organoides/metabolismo , Biblioteca de Peptídeos , Ubiquitina/química , Ubiquitina/genética
4.
Genes Dev ; 27(10): 1101-14, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23699408

RESUMO

Tumorigenesis results from dysregulation of oncogenes and tumor suppressors that influence cellular proliferation, differentiation, apoptosis, and/or senescence. Many gene products involved in these processes are substrates of the E3 ubiquitin ligase Mule/Huwe1/Arf-BP1 (Mule), but whether Mule acts as an oncogene or tumor suppressor in vivo remains controversial. We generated K14Cre;Mule(flox/flox(y)) (Mule kKO) mice and subjected them to DMBA/PMA-induced skin carcinogenesis, which depends on oncogenic Ras signaling. Mule deficiency resulted in increased penetrance, number, and severity of skin tumors, which could be reversed by concomitant genetic knockout of c-Myc but not by knockout of p53 or p19Arf. Notably, in the absence of Mule, c-Myc/Miz1 transcriptional complexes accumulated, and levels of p21CDKN1A (p21) and p15INK4B (p15) were down-regulated. In vitro, Mule-deficient primary keratinocytes exhibited increased proliferation that could be reversed by Miz1 knockdown. Transfer of Mule-deficient transformed cells to nude mice resulted in enhanced tumor growth that again could be abrogated by Miz1 knockdown. Our data demonstrate in vivo that Mule suppresses Ras-mediated tumorigenesis by preventing an accumulation of c-Myc/Miz1 complexes that mediates p21 and p15 down-regulation.


Assuntos
Transformação Celular Neoplásica , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo , Proteínas Nucleares/antagonistas & inibidores , Proteína Oncogênica p21(ras)/metabolismo , Proteínas Inibidoras de STAT Ativados/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , 9,10-Dimetil-1,2-benzantraceno/farmacologia , Animais , Transformação Celular Neoplásica/genética , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p15/biossíntese , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Inibidor de Quinase Dependente de Ciclina p21/genética , Feminino , Genes ras , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Oncogênica p21(ras)/antagonistas & inibidores , Proteína Oncogênica p21(ras)/genética , Proteínas Inibidoras de STAT Ativados/deficiência , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Proto-Oncogênicas c-myc/deficiência , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol/farmacologia , Proteína Supressora de Tumor p53 , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
5.
Nat Rev Mol Cell Biol ; 9(7): 532-42, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18568041

RESUMO

Cytochrome c is primarily known for its function in the mitochondria as a key participant in the life-supporting function of ATP synthesis. However, when a cell receives an apoptotic stimulus, cytochrome c is released into the cytosol and triggers programmed cell death through apoptosis. The release of cytochrome c and cytochrome-c-mediated apoptosis are controlled by multiple layers of regulation, the most prominent players being members of the B-cell lymphoma protein-2 (BCL2) family. As well as its role in canonical intrinsic apoptosis, cytochrome c amplifies signals that are generated by other apoptotic pathways and participates in certain non-apoptotic functions.


Assuntos
Apoptose/fisiologia , Respiração Celular/fisiologia , Citocromos c/metabolismo , Mitocôndrias/metabolismo , Animais , Caspases/metabolismo , Ciclosporina/metabolismo , Citocromos c/química , Citocromos c/genética , Humanos , Mitocôndrias/ultraestrutura , Modelos Moleculares , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(2): 292-297, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28011762

RESUMO

Although the enzymatic activity of isocitrate dehydrogenase 1 (IDH1) was defined decades ago, its functions in vivo are not yet fully understood. Cytosolic IDH1 converts isocitrate to α-ketoglutarate (α-KG), a key metabolite regulating nitrogen homeostasis in catabolic pathways. It was thought that IDH1 might enhance lipid biosynthesis in liver or adipose tissue by generating NADPH, but we show here that lipid contents are relatively unchanged in both IDH1-null mouse liver and IDH1-deficient HepG2 cells generated using the CRISPR-Cas9 system. Instead, we found that IDH1 is critical for liver amino acid (AA) utilization. Body weights of IDH1-null mice fed a high-protein diet (HPD) were abnormally low. After prolonged fasting, IDH1-null mice exhibited decreased blood glucose but elevated blood alanine and glycine compared with wild-type (WT) controls. Similarly, in IDH1-deficient HepG2 cells, glucose consumption was increased, but alanine utilization and levels of intracellular α-KG and glutamate were reduced. In IDH1-deficient primary hepatocytes, gluconeogenesis as well as production of ammonia and urea were decreased. In IDH1-deficient whole livers, expression levels of genes involved in AA metabolism were reduced, whereas those involved in gluconeogenesis were up-regulated. Thus, IDH1 is critical for AA utilization in vivo and its deficiency attenuates gluconeogenesis primarily by impairing α-KG-dependent transamination of glucogenic AAs such as alanine.


Assuntos
Aminoácidos/metabolismo , Isocitrato Desidrogenase/deficiência , Fígado/metabolismo , Animais , Glicemia/metabolismo , Linhagem Celular Tumoral , Jejum/metabolismo , Gluconeogênese , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regulação para Cima/fisiologia
7.
Proc Natl Acad Sci U S A ; 114(7): E1148-E1157, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137882

RESUMO

Wnt signaling, named after the secreted proteins that bind to cell surface receptors to activate the pathway, plays critical roles both in embryonic development and the maintenance of homeostasis in many adult tissues. Two particularly important cellular programs orchestrated by Wnt signaling are proliferation and stem cell self-renewal. Constitutive activation of the Wnt pathway resulting from mutation or improper modulation of pathway components contributes to cancer development in various tissues. Colon cancers frequently bear inactivating mutations of the adenomatous polyposis coli (APC) gene, whose product is an important component of the destruction complex that regulates ß-catenin levels. Stabilization and nuclear localization of ß-catenin result in the expression of a panel of Wnt target genes. We previously showed that Mule/Huwe1/Arf-BP1 (Mule) controls murine intestinal stem and progenitor cell proliferation by modulating the Wnt pathway via c-Myc. Here we extend our investigation of Mule's influence on oncogenesis by showing that Mule interacts directly with ß-catenin and targets it for degradation under conditions of hyperactive Wnt signaling. Our findings suggest that Mule uses various mechanisms to fine-tune the Wnt pathway and provides multiple safeguards against tumorigenesis.


Assuntos
Proteínas Supressoras de Tumor/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Via de Sinalização Wnt , beta Catenina/antagonistas & inibidores , Proteína da Polipose Adenomatosa do Colo/deficiência , Animais , Proteína Axina/biossíntese , Proteína Axina/genética , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Neoplasias do Colo/metabolismo , Ciclina D1/biossíntese , Ciclina D1/genética , Regulação para Baixo , Genes APC , Genes Supressores de Tumor , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/fisiologia , Organoides/metabolismo , Organoides/ultraestrutura , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteólise , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
8.
Proc Natl Acad Sci U S A ; 113(5): 1387-92, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26787889

RESUMO

Gain-of-function mutations in isocitrate dehydrogenase 1 (IDH1) are key drivers of hematopoietic malignancies. Although these mutations are most commonly associated with myeloid diseases, they also occur in malignancies of the T-cell lineage. To investigate their role in these diseases and provide tractable disease models for further investigation, we analyzed the T-cell compartment in a conditional knock-in (KI) mouse model of mutant Idh1. We observed the development of a spontaneous T-cell acute lymphoblastic leukemia (T-ALL) in these animals. The disease was transplantable and maintained expression of mutant IDH1. Whole-exome sequencing revealed the presence of a spontaneous activating mutation in Notch1, one of the most common mutations in human T-ALL, suggesting Idh1 mutations may have the capacity to cooperate with Notch1 to drive T-ALL. To further investigate the Idh1 mutation as an oncogenic driver in the T-cell lineage, we crossed Idh1-KI mice with conditional Trp53 null mice, a well-characterized model of T-cell malignancy, and found that T-cell lymphomagenesis was accelerated in mice bearing both mutations. Because both IDH1 and p53 are known to affect cellular metabolism, we compared the requirements for glucose and glutamine in cells derived from these tumors and found that cells bearing the Idh1 mutation have an increased dependence on both glucose and glutamine. These data suggest that mutant IDH1 contributes to malignancy in the T-cell lineage and may alter the metabolic profile of malignant T cells.


Assuntos
Isocitrato Desidrogenase/genética , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animais , Exoma , Genes p53 , Camundongos
9.
Genes Dev ; 25(24): 2610-8, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22016339

RESUMO

Histone deacetylases (HDACs) are major epigenetic modulators involved in a broad spectrum of human diseases including cancers. Administration of HDAC inhibitors (HDACis) leads to growth inhibition, differentiation, and apoptosis of cancer cells. Understanding the regulatory mechanism of HDACs is imperative to harness the therapeutic potentials of HDACis. Here we show that HDACi- and DNA damage-induced apoptosis are severely compromised in mouse embryonic fibroblasts lacking a HECT domain ubiquitin ligase, Mule (Mcl-1 ubiquitin ligase E3). Mule specifically targets HDAC2 for ubiquitination and degradation. Accumulation of HDAC2 in Mule-deficient cells leads to compromised p53 acetylation as well as crippled p53 transcriptional activation, accumulation, and apoptotic response upon DNA damage and Nutlin-3 treatments. These defects in Mule-null cells can be partially reversed by HDACis and fully rescued by lowering the elevated HDAC2 in Mule-null cells to the normal levels as in wild-type cells. Taken together, our results reveal a critical regulatory mechanism of HDAC2 by Mule and suggest this pathway determines the cellular response to HDACis and DNA damage.


Assuntos
Apoptose/efeitos dos fármacos , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Acetilação , Linhagem Celular Tumoral , Dano ao DNA , Células HEK293 , Humanos , Ligação Proteica , Estabilidade Proteica , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases/genética
10.
Proc Natl Acad Sci U S A ; 112(4): 1119-24, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25583492

RESUMO

UV radiation resistance-associated gene (UVRAG) encodes a tumor suppressor with putative roles in autophagy, endocytic trafficking, and DNA damage repair but its in vivo role in T cells is unknown. Because conditional homozygous deletion of Uvrag in mice results in early embryonic lethality, we generated T-cell-specific UVRAG-deficient mice that lacked UVRAG expression specifically in T cells. This loss of UVRAG led to defects in peripheral homeostasis that could not be explained by the increased sensitivity to cell death and impaired proliferation observed for other autophagy-related gene knockout mice. Instead, UVRAG-deficient T-cells exhibited normal mitochondrial clearance and activation-induced autophagy, suggesting that UVRAG has an autophagy-independent role that is critical for peripheral naive T-cell homeostatic proliferation. In vivo, T-cell-specific loss of UVRAG dampened CD8(+) T-cell responses to LCMV infection in mice, delayed viral clearance, and impaired memory T-cell generation. Our data provide novel insights into the control of autophagy in T cells and identify UVRAG as a new regulator of naïve peripheral T-cell homeostasis.


Assuntos
Autofagia/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunidade Celular , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Proteínas Supressoras de Tumor/imunologia , Animais , Autofagia/genética , Linfócitos T CD8-Positivos/patologia , Deleção de Genes , Homeostase/genética , Homeostase/imunologia , Coriomeningite Linfocítica/genética , Camundongos , Camundongos Knockout , Proteínas Supressoras de Tumor/isolamento & purificação
11.
Immunity ; 29(4): 615-27, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18835195

RESUMO

Fas is highly expressed in activated and germinal center (GC) B cells but can potentially be inactivated by misguided somatic hypermutation. We employed conditional Fas-deficient mice to investigate the physiological functions of Fas in various B cell subsets. B cell-specific Fas-deficient mice developed fatal lymphoproliferation due to activation of B cells and T cells. Ablation of Fas specifically in GC B cells reproduced the phenotype, indicating that the lymphoproliferation initiates in the GC environment. B cell-specific Fas-deficient mice also showed an accumulation of IgG1(+) memory B cells expressing high amounts of CD80 and the expansion of CD28-expressing CD4(+) Th cells. Blocking T cell-B cell interaction and GC formation completely prevented the fatal lymphoproliferation. Thus, Fas-mediated selection of GC B cells and the resulting memory B cell compartment is essential for maintaining the homeostasis of both T and B lymphocytes.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Linfócitos T/imunologia , Receptor fas/metabolismo , Animais , Antígenos CD/imunologia , Antígenos CD/metabolismo , Linfócitos B/metabolismo , Antígeno B7-1/imunologia , Antígeno B7-1/metabolismo , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Antígeno CTLA-4 , Comunicação Celular , Diferenciação Celular , Proliferação de Células , Citocinas/sangue , Centro Germinativo/metabolismo , Homeostase , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Linfócitos T/metabolismo , Receptor fas/deficiência , Receptor fas/imunologia
12.
Proc Natl Acad Sci U S A ; 111(12): 4472-7, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24567396

RESUMO

Mutations in the tumor suppressor BRCA1 predispose women to breast and ovarian cancers. The mechanism underlying the tissue-specific nature of BRCA1's tumor suppression is obscure. We previously showed that the antioxidant pathway regulated by the transcription factor NRF2 is defective in BRCA1-deficient cells. Reactivation of NRF2 through silencing of its negative regulator KEAP1 permitted the survival of BRCA1-null cells. Here we show that estrogen (E2) increases the expression of NRF2-dependent antioxidant genes in various E2-responsive cell types. Like NRF2 accumulation triggered by oxidative stress, E2-induced NRF2 accumulation depends on phosphatidylinositol 3-kinase-AKT activation. Pretreatment of mammary epithelial cells (MECs) with the phosphatidylinositol 3-kinase inhibitor BKM120 abolishes the capacity of E2 to increase NRF2 protein and transcriptional activity. In vivo the survival defect of BRCA1-deficient MECs is rescued by the rise in E2 levels associated with pregnancy. Furthermore, exogenous E2 administration stimulates the growth of BRCA1-deficient mammary tumors in the fat pads of male mice. Our work elucidates the basis of the tissue specificity of BRCA1-related tumor predisposition, and explains why oophorectomy significantly reduces breast cancer risk and recurrence in women carrying BRCA1 mutations.


Assuntos
Proteína BRCA1/genética , Sobrevivência Celular/fisiologia , Estrogênios/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Feminino , Xenoenxertos , Camundongos , Camundongos Transgênicos , Estresse Oxidativo
13.
Eur J Immunol ; 45(2): 418-27, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25393615

RESUMO

STAT3 is a critical transcription factor activated downstream of cytokine signaling and is integral for the function of multiple immune cell types. Human mutations in STAT3 cause primary immunodeficiency resulting in impaired control of a variety of infections, including reactivation of latent viruses. In this study, we investigate how T-cell functions of STAT3 contribute to responses to viral infection by inducing chronic lymphocytic choriomeningitis virus (LCMV) infection in mice lacking STAT3 specifically in T cells. Although mice with conditional disruption of STAT3 in T cells were able to mount early responses to viral infection similar to control animals, including expansion of effector T cells, we found generation of T-follicular helper (Tfh) cells to be impaired. As a result, STAT3 T cell deficient mice produced attenuated germinal center reactions, and did not accumulate bone marrow virus specific IgG-secreting cells, resulting in failure to maintain levels of virus-specific IgG or mount neutralizing responses to LCMV in the serum. These effects were associated with reduced control of viral replication and prolonged infection. Our results demonstrate the importance of STAT3 in T cells for the generation of functional long-term humoral immunity to viral infections.


Assuntos
Anticorpos Antivirais/biossíntese , Imunidade Humoral , Imunoglobulina G/biossíntese , Coriomeningite Linfocítica/imunologia , Fator de Transcrição STAT3/imunologia , Linfócitos T Auxiliares-Indutores/patologia , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Linfócitos B/virologia , Doença Crônica , Expressão Gênica , Imunofenotipagem , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/patologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Knockout , Fator de Transcrição STAT3/deficiência , Fator de Transcrição STAT3/genética , Transdução de Sinais , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Linfócitos T Citotóxicos/virologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/virologia , Replicação Viral
14.
Diabetologia ; 57(9): 1889-98, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24981769

RESUMO

AIMS/HYPOTHESIS: Diabetes mellitus represents a significant burden on the health of the global population. Both type 1 and type 2 diabetes share a common feature of a reduction in functional beta cell mass. A newly discovered ubiquitination molecule HECT, UBA and WWE domain containing 1, E3 ubiquitin protein ligase (HUWE1 [also known as MULE or ARF-BP1]) is a critical regulator of p53-dependent apoptosis. However, its role in islet homeostasis is not entirely clear. METHODS: We generated mice with pancreas-specific deletion of Huwe1 using a Cre-loxP recombination system driven by the Pdx1 promoter (Pdx1cre (+) Huwe1 (fl/fl)) to assess the in vivo role of HUWE1 in the pancreas. RESULTS: Targeted deletion of Huwe1 in the pancreas preferentially activated p53-mediated beta cell apoptosis, leading to reduced beta cell mass and diminished insulin exocytosis. These defects were aggravated by ageing, with progressive further decline in insulin secretion and glucose homeostasis in older mice. Intriguingly, Huwe1 deletion provided protection against genotoxicity, such that Pdx1cre (+) Huwe1 (fl/fl) mice were resistant to multiple-low-dose-streptozotocin-induced beta cell apoptosis and diabetes. CONCLUSION/INTERPRETATION: HUWE1 expression in the pancreas is essential in determining beta cell mass. Furthermore, HUWE1 demonstrated divergent roles in regulating beta cell apoptosis depending on physiological or genotoxic conditions.


Assuntos
Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Pâncreas/metabolismo , Pâncreas/patologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Mutantes , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases/genética
15.
Proc Natl Acad Sci U S A ; 108(45): 18354-9, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22042853

RESUMO

TNF receptor-associated factor 2 (TRAF2) is a key intracellular signaling mediator that acts downstream of not only TNFα but also various members of the TNFα superfamily. Here, we report that, despite their lack of TNFα signaling, TRAF2(-/-)TNFα(-/-) mice develop an inflammatory disorder characterized by autoantibody accumulation and organ infiltration by T cells with the phenotypes of activated, effector, and memory cells. RAG1(-/-) mice reconstituted with TRAF2(-/-)TNFα(-/-) bone marrow cells showed increased numbers of hyperactive T cells and rapidly developed progressive and eventually lethal inflammation. No inflammation was observed in RAG1(-/-) mice reconstituted with TRAF2(-/-)TNFα(-/-)T-cell receptor ß(-/-) or TRAF2(-/-)TNFα(-/-)NFκB-induced kinase(+/-) bone marrow cells. The pathogenic TRAF2(-/-)TNFα(-/-) T cells showed constitutive NFκB2p52 activation and produced elevated levels of T-helper 1 and T-helper 17 cytokines. Our results suggest that a regulatory circuit consisting of TRAF2-NFκB-induced kinase-NFκB2p52 is essential for the proper control of effector T-cell polarization and that loss of T-cell TRAF2 function induces constitutive NFκB2p52 activity that drives fatal autoimmune inflammation independently of TNFα signaling. The involvement of this regulatory circuit in controlling autoimmune responses highlights the delicate balance required to avoid paradoxical adverse events when implementing new targeted anti-inflammatory therapies.


Assuntos
Autoimunidade , NF-kappa B/metabolismo , Transdução de Sinais , Fator 2 Associado a Receptor de TNF/fisiologia , Animais , Western Blotting , Citocinas/biossíntese , Citometria de Fluxo , Inflamação/fisiopatologia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase
16.
Proc Natl Acad Sci U S A ; 108(4): 1555-60, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21205887

RESUMO

14-3-3σ regulates cytokinesis and cell cycle arrest induced by DNA damage but its role in the immune system is unknown. Using gene-targeted 14-3-3σ-deficient (i.e., KO) mice, we studied the role of 14-3-3σ in B-cell functions. Total numbers of B cells were reduced by spontaneous apoptosis of peripheral B cells. Upon B-cell antigen receptor engagement in vitro, KO B cells did not proliferate properly or up-regulate CD86. In response to T cell-independent antigens, KO B cells showed poor secretion of antigen-specific IgM. This deficit led to increased lethality of KO mice after vesicular stomatitis virus infection. KO B cells showed elevated total FOXO transcriptional activity but also increased FOXO1 degradation. Coimmunoprecipitation revealed that endogenous 14-3-3σ protein formed a complex with FOXO1 protein. Our results suggest that 14-3-3σ maintains FOXO1 at a consistent level critical for normal B-cell antigen receptor signaling and B-cell survival.


Assuntos
Proteínas 14-3-3/imunologia , Linfócitos B/imunologia , Fatores de Transcrição Forkhead/imunologia , Homeostase/imunologia , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Transferência Adotiva , Animais , Antígenos/imunologia , Apoptose/imunologia , Linfócitos B/citologia , Linfócitos B/metabolismo , Western Blotting , Proliferação de Células , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Ficoll/análogos & derivados , Ficoll/imunologia , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Receptores de Antígenos de Linfócitos B/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Trinitrobenzenos/imunologia
17.
Am J Ind Med ; 56(2): 252-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22767408

RESUMO

BACKGROUND: Formaldehyde is used in many occupational settings, most notably in manufacturing, health care, and embalming. Formaldehyde has been classified as a human carcinogen, but its mechanism of action remains uncertain. METHODS: We carried out a cross-sectional study of 43 formaldehyde-exposed workers and 51 unexposed age and sex-matched controls in Guangdong, China to study formaldehyde's early biologic effects. To follow up our previous report that the total lymphocyte count was decreased in formaldehyde-exposed workers compared with controls, we evaluated each major lymphocyte subset (i.e., CD4(+) T cells, CD8(+) T cells, natural killer [NK] cells, and B cells) and T cell lymphocyte subset (CD4(+) naïve and memory T cells, CD8(+) naïve and memory T cells, and regulatory T cells). Linear regression of each subset was used to test for differences between exposed workers and controls, adjusting for potential confounders. RESULTS: Total NK cell and T cell counts were about 24% (P = 0.037) and 16% (P = 0.0042) lower, respectively, among exposed workers. Among certain T cell subsets, decreased counts among exposed workers were observed for CD8(+) T cells (P = 0.026), CD8(+) effector memory T cells (P = 0.018), and regulatory T cells (CD4(+) FoxP3(+) : P = 0.04; CD25(+) FoxP3(+) : P = 0.008). CONCLUSIONS: Formaldehyde-exposed workers experienced decreased counts of NK cells, regulatory T cells, and CD8(+) effector memory T cells; however, due to the small sample size; these findings need to be confirmed in larger studies.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Indústria Química , Formaldeído/efeitos adversos , Subpopulações de Linfócitos/metabolismo , Exposição Ocupacional/efeitos adversos , Adulto , Poluentes Ocupacionais do Ar/análise , Linfócitos B/metabolismo , Biomarcadores/sangue , Linfócitos T CD8-Positivos/metabolismo , Estudos Transversais , Feminino , Formaldeído/análise , Humanos , Células Matadoras Naturais/metabolismo , Modelos Lineares , Contagem de Linfócitos , Masculino , Análise por Pareamento , Exposição Ocupacional/análise , Linfócitos T Reguladores/metabolismo
18.
Carcinogenesis ; 33(8): 1538-41, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22665366

RESUMO

Epidemiological studies suggest that trichloroethylene (TCE) exposure may be associated with renal cancer. The biological mechanisms involved are not exactly known although nephrotoxicity is believed to play a role. Studies on TCE nephrotoxicity among humans, however, have been largely inconsistent. We studied kidney toxicity in Chinese factory workers exposed to TCE using novel sensitive nephrotoxicity markers. Eighty healthy workers exposed to TCE and 45 comparable unexposed controls were included in the present analyses. Personal TCE exposure measurements were taken over a 2-week period before urine collection. Ninety-six percent of workers were exposed to TCE below the current US Occupational Safety and Health Administration permissible exposure limit (100 ppm 8h TWA), with a mean (SD) of 22.2 (35.9) ppm. Kidney injury molecule-1 (KIM-1) and Pi-glutathione S transferase (GST) alpha were elevated among the exposed subjects as compared with the unexposed controls with a strong exposure-response association between individual estimates of TCE exposure and KIM-1 (P < 0.0001). This is the first report to use a set of sensitive nephrotoxicity markers to study the possible effects of TCE on the kidneys. The findings suggest that at relatively low occupational exposure levels a toxic effect on the kidneys can be observed. This finding supports the biological plausibility of linking TCE exposure and renal cancer.


Assuntos
Glicoproteínas de Membrana/urina , Exposição Ocupacional , Tricloroetileno/toxicidade , Adulto , China , Feminino , Receptor Celular 1 do Vírus da Hepatite A , Humanos , Masculino , Receptores Virais
19.
Cell Death Differ ; 29(9): 1705-1718, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35260822

RESUMO

Hepatic ischemia followed by reperfusion (I/R), a major clinical problem during liver surgical procedures, can induce liver injury with severe cell death including ferroptosis which is characterized by iron-dependent accumulation of lipid peroxidation. The HECT domain-containing ubiquitin E3 ligase HUWE1 (also known as MULE) was initially shown to promote apoptosis. However, our preliminary study demonstrates that high expression of HUWE1 in the liver donors corelates with less injury and better hepatic function after liver transplantation in patients. Thus, we investigate the role of HUWE1 in acute liver injury, and identify HUWE1 as a negative ferroptosis modulator through transferrin receptor 1(TfR1). Deficiency of Huwe1 in mice hepatocytes (HKO) exacerbated I/R and CCl4-induced liver injury with more ferroptosis occurrence. Moreover, Suppression of Huwe1 remarkably enhances cellular sensitivity to ferroptosis in primary hepatocytes and mouse embryonic fibroblasts. Mechanistically, HUWE1 specifically targets TfR1 for ubiquitination and proteasomal degradation, thereby regulates iron metabolism. Importantly, chemical and genetic inhibition of TfR1 dramatically diminishes the ferroptotic cell death in Huwe1 KO cells and Huwe1 HKO mice. Therefore, HUWE1 is a potential protective factor to antagonize both aberrant iron accumulation and ferroptosis thereby mitigating acute liver injury. These findings may provide clinical implications for patients with the high-expression Huwe1 alleles.


Assuntos
Ferroptose , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Equidae/metabolismo , Fibroblastos/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores da Transferrina/genética , Ubiquitina-Proteína Ligases/genética
20.
Proc Natl Acad Sci U S A ; 105(25): 8691-6, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18562288

RESUMO

A model of chemical thymectomy by inducible Rag ablation was used to study peripheral T cell homeostasis. Induction of Rag ablation was efficient and complete, leading to cessation of thymic T cell production within 3-4 weeks. The decay of peripheral T cells became apparent with a delay of an additional 2-3 weeks and was entirely accounted for by loss of naïve T cells, whereas numbers of memory phenotype and regulatory T cells were not decreased. Naïve CD4 T cells decayed with an average half-life of 50 days, whereas naïve CD8 T cells exhibited a considerably longer half-life. The rapid decay of naïve CD4 T cells was not caused by intrinsic survival differences compared with naïve CD8 T cells, but was caused by changes in the lymphopenic environment resulting in higher microbial load and consequential activation. This finding suggests that in lymphopenic conditions involving compromised thymic function replenishment and survival of a naïve CD4 T cell repertoire may be severely curtailed because of chronic activation. Such a scenario might play a role in the aging immune system and chronic viral infection, such as HIV infection, and contribute to loss of CD4 T cells and impaired immune function. As our data show, continued replenishment with cells from the thymus seems to be required to maintain efficient gut mucosal defense.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Ativação Linfocitária , Timo/imunologia , Animais , Antígenos/imunologia , Proteínas de Ligação a DNA/genética , Camundongos , Camundongos Transgênicos , Timo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA