Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864416

RESUMO

INTRODUCTION: Brain-derived extracellular vesicles (BEVs) in blood allows for minimally-invasive investigations of central nervous system (CNS) -specific markers of age-related neurodegenerative diseases (NDDs). Polymer-based EV- and immunoprecipitation (IP)-based BEV-enrichment protocols from blood have gained popularity. We systematically investigated protocol consistency across studies, and determined CNS-specificity of proteins associated with these protocols. METHODS: NDD articles investigating BEVs in blood using polymer-based and/or IP-based BEV enrichment protocols were systematically identified, and protocols compared. Proteins used for BEV-enrichment and/or post-enrichment were assessed for CNS- and brain-cell-type-specificity, extracellular domains (ECD+), and presence in EV-databases. RESULTS: A total of 82.1% of studies used polymer-based (ExoQuick) EV-enrichment, and 92.3% used L1CAM for IP-based BEV-enrichment. Centrifugation times differed across studies. A total of 26.8% of 82 proteins systematically identified were CNS-specific: 50% ECD+, 77.3% were listed in EV-databases. CONCLUSIONS: We identified protocol steps requiring standardization, and recommend additional CNS-specific proteins that can be used for BEV-enrichment or as BEV-biomarkers. HIGHLIGHTS: Across NDDs, we identified protocols commonly used for EV/BEV enrichment from blood. We identified protocol steps showing variability that require harmonization. We assessed CNS-specificity of proteins used for BEV-enrichment or found in BEV cargo. CNS-specific EV proteins with ECD+ or without were identified. We recommend evaluation of blood-BEV enrichment using these additional ECD+ proteins.

2.
FASEB J ; 36(3): e22208, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35192204

RESUMO

The blood-brain barrier (BBB) prevents the majority of drugs from crossing into the brain and reaching neurons. To overcome this challenge, safe and non-invasive technologies targeting receptor-mediated pathways have been developed. In this study, three single-domain antibodies (sdAbs; IGF1R3, IGF1R4, and IGF1R5) targeting the extracellular domain of the human insulin-like growth factor-1 receptor (IGF1R), generated by llama immunization, showed enhanced transmigration across the rat BBB model (SV-ARBEC) in vitro. The rate of brain uptake of these sdAbs fused to mouse Fc (sdAb-mFc) in vivo was estimated using the fluorescent in situ brain perfusion (ISBP) technique followed by optical brain imaging and distribution volume evaluation. Compared to the brains perfused with the negative control A20.1-mFc, the brains perfused with anti-IGF1R sdAbs showed a significant increase of the total fluorescence intensity (~2-fold, p < .01) and the distribution volume (~4-fold, p < .01). The concentration curve for IGF1R4-mFc demonstrated a linear accumulation plateauing at approximately 400 µg (~1 µM), suggesting a saturable mechanism of transport. Capillary depletion and mass spectrometry analyses of brain parenchyma post-ISBP confirmed the IGF1R4-mFc brain uptake with ~25% of the total amount being accumulated in the parenchymal fraction in contrast to undetectable levels of A20.1-mFc after a 5-min perfusion protocol. Systemic administration of IGF1R4-mFc fused with the non-BBB crossing analgesic peptide galanin (2 and 5 mg/kg) induced a dose-dependent suppression of thermal hyperalgesia in the Hargreaves pain model. In conclusion, novel anti-IGF1R sdAbs showed receptor-mediated brain uptake with pharmacologically effective parenchymal delivery of non-permeable neuroactive peptides.


Assuntos
Barreira Hematoencefálica/metabolismo , Receptor IGF Tipo 1/imunologia , Anticorpos de Cadeia Única/farmacocinética , Animais , Permeabilidade Capilar , Linhagem Celular , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Sprague-Dawley , Anticorpos de Cadeia Única/imunologia
3.
Pharm Res ; 39(7): 1497-1507, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35704250

RESUMO

PURPOSE: We have recently demonstrated the brain-delivery of an Amyloid-ß oligomer (Aßo)-binding peptide-therapeutic fused to the BBB-crossing single domain antibody FC5. The bi-functional fusion protein, FC5-mFc-ABP (KG207-M) lowered both CSF and brain Aß levels after systemic dosing in transgenic mouse and rat models of Alzheimer's disease (AD). For development as a human therapeutic, we have humanized and further engineered the fusion protein named KG207-H. The purpose of the present study was to carry out comparative PK/PD studies of KG207-H in wild type rat and beagle dogs (middle-aged and older) to determine comparability of systemic PK and CSF exposure between rodent species and larger animals with more complex brain structure such as dogs. METHOD: Beagle dogs were used in this study as they accumulate cerebral Aß with age, as seen in human AD patients, and can serve as a model of sporadic AD. KG207-H (5 to 50 mg/kg) was administered intravenously and serum and CSF samples were serially collected for PK studies and to assess target engagement. KG207-H and Aß levels were quantified using multiplexed selected reaction monitoring mass spectrometry. RESULTS: After systemic dosing, KG207-H demonstrated similar serum pharmacokinetics in rats and dogs. KG207-H appeared in the CSF in a time- and dose-dependent manner with similar kinetics, indicating CNS exposure. Further analyses revealed a dose-dependent inverse relationship between CSF KG207-H and Aß levels in both species indicating target engagement. CONCLUSION: This study demonstrates translational attributes of BBB-crossing Aß-targeting biotherapeutic KG207-H in eliciting a pharmacodynamic response, from rodents to larger animal species.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Cães , Camundongos , Camundongos Transgênicos , Ratos
4.
J Biol Chem ; 295(12): 3808-3825, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32029478

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal disease, characterized by the selective loss of motor neurons leading to paralysis. Mutations in the gene encoding superoxide dismutase 1 (SOD1) are the second most common cause of familial ALS, and considerable evidence suggests that these mutations result in an increase in toxicity due to protein misfolding. We previously demonstrated in the SOD1G93A rat model that misfolded SOD1 exists as distinct conformers and forms deposits on mitochondrial subpopulations. Here, using SOD1G93A rats and conformation-restricted antibodies specific for misfolded SOD1 (B8H10 and AMF7-63), we identified the interactomes of the mitochondrial pools of misfolded SOD1. This strategy identified binding proteins that uniquely interacted with either AMF7-63 or B8H10-reactive SOD1 conformers as well as a high proportion of interactors common to both conformers. Of this latter set, we identified the E3 ubiquitin ligase TNF receptor-associated factor 6 (TRAF6) as a SOD1 interactor, and we determined that exposure of the SOD1 functional loops facilitates this interaction. Of note, this conformational change was not universally fulfilled by all SOD1 variants and differentiated TRAF6 interacting from TRAF6 noninteracting SOD1 variants. Functionally, TRAF6 stimulated polyubiquitination and aggregation of the interacting SOD1 variants. TRAF6 E3 ubiquitin ligase activity was required for the former but was dispensable for the latter, indicating that TRAF6-mediated polyubiquitination and aggregation of the SOD1 variants are independent events. We propose that the interaction between misfolded SOD1 and TRAF6 may be relevant to the etiology of ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Superóxido Dismutase-1/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Anticorpos/imunologia , Linhagem Celular , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Mutagênese Sítio-Dirigida , NF-kappa B/metabolismo , Agregados Proteicos , Dobramento de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Transgênicos , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/imunologia , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/genética , Ubiquitinação
5.
FASEB J ; 34(6): 8155-8171, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32342547

RESUMO

Prolonged serum half-life is required for the efficacy of most protein therapeutics. One strategy for half-life extension is to exploit the long circulating half-life of serum albumin by incorporating a binding moiety that recognizes albumin. Here, we describe camelid single-domain antibodies (VH Hs) that bind the serum albumins of multiple species with moderate to high affinity at both neutral and endosomal pH and significantly extend the serum half-lives of multiple proteins in rats from minutes to days. We serendipitously identified an additional VH H (M75) that is naturally pH-sensitive: at endosomal pH, binding affinity for human serum albumin (HSA) was dramatically weakened and binding to rat serum albumin (RSA) was undetectable. Domain mapping revealed that M75 bound to HSA domain 1 and 2. Moreover, alanine scanning of HSA His residues suggested a critical role for His247, located in HSA domain 2, in M75 binding and its pH dependence. Isothermal titration calorimetry experiments were suggestive of proton-linked binding of M75 to HSA, with differing binding enthalpies observed for full-length HSA and an HSA domain 1-domain 2 fusion protein in which surface-exposed His residues were substituted with Ala. M75 conferred moderate half-life extension in rats, from minutes to hours, likely due to rapid dissociation from RSA during FcRn-mediated endosomal recycling in tandem with albumin conformational changes induced by M75 binding that prevented interaction with FcRn. Humanized VH Hs maintained in vivo half-life extension capabilities. These VH Hs represent a new set of tools for extending protein therapeutic half-life and one (M75) demonstrates a unique pH-sensitive binding interaction that can be exploited to achieve modest in vivo half-life.


Assuntos
Produtos Biológicos/metabolismo , Albumina Sérica/metabolismo , Animais , Linhagem Celular , Endossomos/metabolismo , Células HEK293 , Meia-Vida , Humanos , Concentração de Íons de Hidrogênio , Masculino , Ligação Proteica/fisiologia , Ratos , Ratos Wistar
6.
Nat Immunol ; 9(2): 137-45, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18157132

RESUMO

Adhesion molecules of the immunoglobulin superfamily are crucial effectors of leukocyte trafficking into the central nervous system. Using a lipid raft-based proteomic approach, we identified ALCAM as an adhesion molecule involved in leukocyte migration across the blood-brain barrier (BBB). ALCAM expressed on BBB endothelium localized together with CD6 on leukocytes and with BBB endothelium transmigratory cups. ALCAM expression on BBB cells was upregulated in active multiple sclerosis and experimental autoimmune encephalomyelitis lesions. Moreover, ALCAM blockade restricted the transmigration of CD4+ lymphocytes and monocytes across BBB endothelium in vitro and in vivo and reduced the severity and delayed the time of onset of experimental autoimmune encephalomyelitis. Our findings indicate an important function for ALCAM in the recruitment of leukocytes into the brain and identify ALCAM as a potential target for the therapeutic dampening of neuroinflammation.


Assuntos
Molécula de Adesão de Leucócito Ativado/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/imunologia , Linfócitos T CD4-Positivos/imunologia , Movimento Celular , Encefalomielite Autoimune Experimental/imunologia , Molécula de Adesão de Leucócito Ativado/análise , Molécula de Adesão de Leucócito Ativado/efeitos dos fármacos , Barreira Hematoencefálica/química , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Proteômica
7.
J Neurochem ; 146(6): 735-752, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29877588

RESUMO

The blood-brain barrier (BBB) is a formidable obstacle to the delivery of therapeutics to the brain. Antibodies that bind transferrin receptor (TfR), which is enriched in brain endothelial cells, have been shown to cross the BBB and are being developed as fusion proteins to deliver therapeutic cargos to brain targets. Various antibodies have been developed for this purpose and their in vivo evaluation demonstrated that either low affinity or monovalent receptor binding re-directs their transcellular trafficking away from lysosomal degradation and toward improved exocytosis on the abluminal side of the BBB. However, these studies have been performed with antibodies that recognize different TfR epitopes and have different binding characteristics, preventing inter-study comparisons. In this study, the efficiency of transcytosis in vitro and intracellular trafficking in endosomal compartments were evaluated in an in vitro BBB model for affinity variants (Kd from 5 to174 nM) of the rat TfR-binding antibody, OX26. Distribution in subcellular fractions of the rat brain endothelial cells was determined using both targeted quantitative proteomics-selected reaction monitoring and fluorescent imaging with markers of early- and late endosomes. The OX26 variants with affinities of 76 and 108 nM showed improved trancytosis (Papp values) across the in vitro BBB model compared with a 5 nM OX26. Although ~40% of the 5 nM OX26 and ~35% of TfR co-localized with late-endosome/lysosome compartment, 76 and 108 nM affinity variants showed lower amounts in lysosomes and a predominant co-localization with early endosome markers. The study links bivalent TfR antibody affinity to mechanisms of sorting and trafficking away from late endosomes and lysosomes, resulting in improvement in their transcytosis efficiency. OPEN PRACTICES: Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/ Cover Image for this issue: doi: 10.1111/jnc.14193.


Assuntos
Anticorpos/metabolismo , Barreira Hematoencefálica/metabolismo , Receptores da Transferrina/imunologia , Receptores da Transferrina/metabolismo , Transcitose/fisiologia , Animais , Anticorpos/farmacologia , Afinidade de Anticorpos/fisiologia , Encéfalo/citologia , Endossomos/efeitos dos fármacos , Endossomos/fisiologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Espectrometria de Massas , Ligação Proteica/fisiologia , Ratos , Frações Subcelulares/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7 , Proteína Vermelha Fluorescente
8.
Mol Pharm ; 15(4): 1420-1431, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29485883

RESUMO

The blood-brain barrier (BBB) is a formidable obstacle for brain delivery of therapeutic antibodies. However, antibodies against the transferrin receptor (TfR), enriched in brain endothelial cells, have been developed as delivery carriers of therapeutic cargoes into the brain via a receptor-mediated transcytosis pathway. In vitro and in vivo studies demonstrated that either a low-affinity or monovalent binding of these antibodies to the TfR improves their release on the abluminal side of the BBB and target engagement in brain parenchyma. However, these studies have been performed with mouse-selective TfR antibodies that recognize different TfR epitopes and have varied binding characteristics. In this study, we evaluated serum pharmacokinetics and brain and CSF exposure of the rat TfR-binding antibody OX26 affinity variants, having KDs of 5 nM, 76 nM, 108 nM, and 174 nM, all binding the same epitope in bivalent format. Pharmacodynamic responses were tested in the Hargreaves chronic pain model after conjugation of OX26 affinity variants with the analgesic and antiepileptic peptide, galanin. OX26 variants with affinities of 76 nM and 108 nM showed enhanced brain and cerebrospinal fluid (CSF) exposure and higher potency in the Hargreaves model, compared to a 5 nM affinity variant; lowering affinity to 174 nM resulted in prolonged serum pharmacokinetics, but reduced brain and CSF exposure. The study demonstrates that binding affinity optimization of TfR-binding antibodies could improve their brain and CSF exposure even in the absence of monovalent TfR engagement.


Assuntos
Anticorpos Monoclonais/química , Encéfalo/efeitos dos fármacos , Galanina/química , Receptores da Transferrina/química , Receptores da Transferrina/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Afinidade de Anticorpos/fisiologia , Bioengenharia/métodos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Galanina/metabolismo , Masculino , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley
9.
FASEB J ; 30(5): 1927-40, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26839377

RESUMO

Receptor mediated transcytosis harnessing the cellular uptake and transport of natural ligands across the blood-brain barrier (BBB) has been identified as a means for antibody delivery to the CNS. In this study, we characterized bispecific antibodies in which a BBB-crossing antibody fragment FC5 was used as a BBB carrier. Cargo antibodies were either a high-affinity, selective antibody antagonist of the metabotropic glutamate receptor-1 (BBB-mGluR1), a widely abundant CNS target, or an IgG that does not bind the CNS target (BBB-NiP). Both BBB-NiP and BBB-mGluR1 demonstrated a similar 20-fold enhanced rate of transcytosis across an in vitro BBB model compared with mGluR1 IgG fused to a control antibody fragment. All 3 bispecific antibodies exhibited identical pharmacokinetics in vivo Comparative assessment of BBB-NiP and BBB-mGluR1 revealed that, whereas their serum pharmacokinetics and BBB penetration were identical, their central disposition (brain levels) and elimination (cerebrospinal fluid levels) were widely different, due to central target-mediated removal of the mGluR1-engaging antibody. Central mGluR1 target engagement after systemic administration was demonstrated by a dose-dependent inhibition of mGluR-1-mediated thermal hyperalgesia and by colocalization of the antibody with thalamic neurons involved in mGluR1-mediated pain processing. We demonstrate the feasibility of targeting central G-protein-coupled receptors using a BBB-crossing bispecific antibody approach and emerging principles that govern brain distribution and disposition of these antibodies. These data will be important for designing safe and selective CNS antibody therapeutics.-Webster, C. I., Caram-Salas, N., Haqqani, A. S., Thom, G., Brown, L., Rennie, K., Yogi, A., Costain, W., Brunette, E., Stanimirovic, D. B. Brain penetration, target engagement, and disposition of the blood-brain barrier-crossing bispecific antibody antagonist of metabotropic glutamate receptor type 1.


Assuntos
Anticorpos Biespecíficos/farmacologia , Encéfalo/metabolismo , Dor/tratamento farmacológico , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Analgésicos , Animais , Produtos Biológicos/metabolismo , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Camelidae , Membrana Celular , Células HEK293 , Temperatura Alta/efeitos adversos , Humanos , Imunoconjugados/metabolismo , Imunoglobulina G/imunologia , Dor/etiologia , Engenharia de Proteínas/métodos , Ratos , Receptores de Glutamato Metabotrópico/metabolismo
10.
FASEB J ; 28(11): 4764-78, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25070367

RESUMO

The blood-brain barrier (BBB) prevents the access of therapeutic antibodies to central nervous system (CNS) targets. The engineering of bispecific antibodies in which a therapeutic "arm" is combined with a BBB-transcytosing arm can significantly enhance their brain delivery. The BBB-permeable single-domain antibody FC5 was previously isolated by phenotypic panning of a naive llama single-domain antibody phage display library. In this study, FC5 was engineered as a mono- and bivalent fusion with the human Fc domain to optimize it as a modular brain delivery platform. In vitro studies demonstrated that the bivalent fusion of FC5 with Fc increased the rate of transcytosis (Papp) across brain endothelial monolayer by 25% compared with monovalent fusion. Up to a 30-fold enhanced apparent brain exposure (derived from serum and cerebrospinal fluid pharmacokinetic profiles) of FC5- compared with control domain antibody-Fc fusions after systemic dosing in rats was observed. Systemic pharmacological potency was evaluated in the Hargreaves model of inflammatory pain using the BBB-impermeable neuropeptides dalargin and neuropeptide Y chemically conjugated with FC5-Fc fusion proteins. Improved serum pharmacokinetics of Fc-fused FC5 contributed to a 60-fold increase in pharmacological potency compared with the single-domain version of FC5; bivalent and monovalent FC5 fusions with Fc exhibited similar systemic pharmacological potency. The study demonstrates that modular incorporation of FC5 as the BBB-carrier arm in bispecific antibodies or antibody-drug conjugates offers an avenue to develop pharmacologically active biotherapeutics for CNS indications.


Assuntos
Anticorpos Biespecíficos/metabolismo , Produtos Biológicos/metabolismo , Barreira Hematoencefálica/metabolismo , Animais , Anticorpos Biespecíficos/imunologia , Transporte Biológico/fisiologia , Encéfalo/metabolismo , Humanos , Imunoconjugados/metabolismo , Masculino , Engenharia de Proteínas/métodos , Ratos Wistar , Proteínas Recombinantes de Fusão/metabolismo
11.
Fluids Barriers CNS ; 21(1): 23, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433215

RESUMO

BACKGROUND: The active transport of molecules into the brain from blood is regulated by receptors, transporters, and other cell surface proteins that are present on the luminal surface of endothelial cells at the blood-brain barrier (BBB). However, proteomic profiling of proteins present on the luminal endothelial cell surface of the BBB has proven challenging due to difficulty in labelling these proteins in a way that allows efficient purification of these relatively low abundance cell surface proteins. METHODS: Here we describe a novel perfusion-based labelling workflow: in vivo glycocapture. This workflow relies on the oxidation of glycans present on the luminal vessel surface via perfusion of a mild oxidizing agent, followed by subsequent isolation of glycoproteins by covalent linkage of their oxidized glycans to hydrazide beads. Mass spectrometry-based identification of the isolated proteins enables high-confidence identification of endothelial cell surface proteins in rats and mice. RESULTS: Using the developed workflow, 347 proteins were identified from the BBB in rat and 224 proteins in mouse, for a total of 395 proteins in both species combined. These proteins included many proteins with transporter activity (73 proteins), cell adhesion proteins (47 proteins), and transmembrane signal receptors (31 proteins). To identify proteins that are enriched in vessels relative to the entire brain, we established a vessel-enrichment score and showed that proteins with a high vessel-enrichment score are involved in vascular development functions, binding to integrins, and cell adhesion. Using publicly-available single-cell RNAseq data, we show that the proteins identified by in vivo glycocapture were more likely to be detected by scRNAseq in endothelial cells than in any other cell type. Furthermore, nearly 50% of the genes encoding cell-surface proteins that were detected by scRNAseq in endothelial cells were also identified by in vivo glycocapture. CONCLUSIONS: The proteins identified by in vivo glycocapture in this work represent the most complete and specific profiling of proteins on the luminal BBB surface to date. The identified proteins reflect possible targets for the development of antibodies to improve the crossing of therapeutic proteins into the brain and will contribute to our further understanding of BBB transport mechanisms.


Assuntos
Barreira Hematoencefálica , Proteoma , Ratos , Camundongos , Animais , Células Endoteliais , Proteômica , Encéfalo , Microvasos , Proteínas de Membrana , Polissacarídeos
12.
Mol Pharm ; 10(5): 1542-56, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23150993

RESUMO

FC5 and FC44 are single-domain antibodies (VHHs), selected by functional panning of phage-display llama VHH library for their ability to internalize human brain endothelial cells (BEC) and to transmigrate the in vitro BBB model. Quantification of brain delivery of FC5 and FC44 in vivo was challenging using classical methods because of their short plasma half-life and their loss of functionality with radioactive labeling. A highly sensitive (detection limit <2 ng/mL) and specific SRM-ILIS method to detect and quantify unlabeled VHHs in multiplexed assays was developed and applied to comparatively evaluate brain delivery of FC5 and FC44, and two control VHHs, EG2 and A20.1. FC5 and FC44 compared to control VHHs demonstrated significantly (p < 0.01) enhanced transport (50-100-fold) across rat in vitro BBB model as well as in vivo brain targeting assessed by optical imaging. The multiplexed SRM-ILIS analyses of plasma and CSF levels of codosed VHHs demonstrated that while all 4 VHHs have similar blood pharmacokinetics, only FC5 and FC44 show elevated CSF levels, suggesting that they are potential novel carriers for delivery of drugs and macromolecules across the BBB.


Assuntos
Anticorpos de Domínio Único/sangue , Anticorpos de Domínio Único/líquido cefalorraquidiano , Animais , Barreira Hematoencefálica/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Sistemas de Liberação de Medicamentos , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Humanos , Imunoensaio/métodos , Masculino , Espectrometria de Massas/métodos , Nanotecnologia , Transporte Proteico , Ratos , Ratos Wistar , Anticorpos de Domínio Único/administração & dosagem , Distribuição Tecidual
13.
Pharmaceutics ; 15(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37242805

RESUMO

BACKGROUND: ATP-binding cassette (ABC) transporters comprise a superfamily of genes encoding membrane proteins with nucleotide-binding domains (NBD). These transporters, including drug efflux across the blood-brain barrier (BBB), carry a variety of substrates through plasma membranes against substrate gradients, fueled by hydrolyzing ATP. The expression patterns/enrichment of ABC transporter genes in brain microvessels compared to peripheral vessels and tissues are largely uncharacterized. METHODS: In this study, the expression patterns of ABC transporter genes in brain microvessels, peripheral tissues (lung, liver and spleen) and lung vessels were investigated using RNA-seq and WesTM analyses in three species: human, mouse and rat. RESULTS: The study demonstrated that ABC drug efflux transporter genes (including ABCB1, ABCG2, ABCC4 and ABCC5) were highly expressed in isolated brain microvessels in all three species studied; the expression of ABCB1, ABCG2, ABCC1, ABCC4 and ABCC5 was generally higher in rodent brain microvessels compared to those of humans. In contrast, ABCC2 and ABCC3 expression was low in brain microvessels, but high in rodent liver and lung vessels. Overall, most ABC transporters (with the exception of drug efflux transporters) were enriched in peripheral tissues compared to brain microvessels in humans, while in rodent species, additional ABC transporters were found to be enriched in brain microvessels. CONCLUSIONS: This study furthers the understanding of species similarities and differences in the expression patterns of ABC transporter genes; this is important for translational studies in drug development. In particular, CNS drug delivery and toxicity may vary among species depending on their unique profiles of ABC transporter expression in brain microvessels and BBB.

14.
Biology (Basel) ; 12(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132326

RESUMO

Cerebrovascular pathology that involves altered protein levels (or signaling) of the transforming growth factor beta (TGFß) family has been associated with various forms of age-related dementias, including Alzheimer disease (AD) and vascular cognitive impairment and dementia (VCID). Transgenic mice overexpressing TGFß1 in the brain (TGF mice) recapitulate VCID-associated cerebrovascular pathology and develop cognitive deficits in old age or when submitted to comorbid cardiovascular risk factors for dementia. We characterized the cerebrovascular proteome of TGF mice using mass spectrometry (MS)-based quantitative proteomics. Cerebral arteries were surgically removed from 6-month-old-TGF and wild-type mice, and proteins were extracted and analyzed by gel-free nanoLC-MS/MS. We identified 3602 proteins in brain vessels, with 20 demonstrating significantly altered levels in TGF mice. For total and/or differentially expressed proteins (p ≤ 0.01, ≥ 2-fold change), using multiple databases, we (a) performed protein characterization, (b) demonstrated the presence of their RNA transcripts in both mouse and human cerebrovascular cells, and (c) demonstrated that several of these proteins were present in human extracellular vesicles (EVs) circulating in blood. Finally, using human plasma, we demonstrated the presence of several of these proteins in plasma and plasma EVs. Dysregulated proteins point to perturbed brain vessel vasomotricity, remodeling, and inflammation. Given that blood-isolated EVs are novel, attractive, and a minimally invasive biomarker discovery platform for age-related dementias, several proteins identified in this study can potentially serve as VCID markers in humans.

15.
Fluids Barriers CNS ; 20(1): 36, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237379

RESUMO

Blood brain barrier (BBB) models in vitro are an important tool to aid in the pre-clinical evaluation and selection of BBB-crossing therapeutics. Stem cell derived BBB models have recently demonstrated a substantial advantage over primary and immortalized brain endothelial cells (BECs) for BBB modeling. Coupled with recent discoveries highlighting significant species differences in the expression and function of key BBB transporters, the field is in need of robust, species-specific BBB models for improved translational predictability. We have developed a mouse BBB model, composed of mouse embryonic stem cell (mESC-D3)-derived brain endothelial-like cells (mBECs), employing a directed monolayer differentiation strategy. Although the mBECs showed a mixed endothelial-epithelial phenotype, they exhibited high transendothelial electrical resistance, inducible by retinoic acid treatment up to 400 Ω cm2. This tight cell barrier resulted in restricted sodium fluorescein permeability (1.7 × 10-5 cm/min), significantly lower than that of bEnd.3 cells (1.02 × 10-3 cm/min) and comparable to human induced pluripotent stem cell (iPSC)-derived BECs (2.0 × 10-5 cm/min). The mBECs expressed tight junction proteins, polarized and functional P-gp efflux transporter and receptor mediated transcytosis (RMT) receptors; collectively important criteria for studying barrier regulation and drug delivery applications in the CNS. In this study, we compared transport of a panel of antibodies binding species selective or cross-reactive epitopes on BBB RMT receptors in both the mBEC and human iPSC-derived BEC model, to demonstrate discrimination of species-specific BBB transport mechanisms.


Assuntos
Barreira Hematoencefálica , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Anticorpos/metabolismo , Transcitose
16.
Commun Chem ; 6(1): 189, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684364

RESUMO

Glycosylation is a key quality attribute that must be closely monitored for protein therapeutics. Established assays such as HILIC-Fld of released glycans and LC-MS of glycopeptides work well for glycoproteins with a few glycosylation sites but are less amenable for those with multiple glycosylation sites, resulting in complex datasets that are time consuming to generate and difficult to analyze. As part of efforts to improve preparedness for future pandemics, researchers are currently assessing where time can be saved in the vaccine development and production process. In this context, we evaluated if neutral and acidic monosaccharides analysis via HPAEC-PAD could be used as a rapid and robust alternative to LC-MS and HILIC-Fld for monitoring glycosylation between protein production batches. Using glycoengineered spike proteins we show that the HPAEC-PAD monosaccharide assays could quickly and reproducibly detect both major and minor glycosylation differences between batches. Moreover, the monosaccharide results aligned well with those obtained by HILIC-Fld and LC-MS.

17.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873207

RESUMO

INTRODUCTION: Brain-derived extracellular vesicles (BEVs) in blood allows for minimally- invasive investigations of CNS-specific markers of age-related neurodegenerative diseases (NDDs). Polymer-based EV- and immunoprecipitation (IP)-based BEV-enrichment protocols from blood have gained popularity. We systematically investigated protocol consistency across studies, and determined CNS-specificity of proteins associated with these protocols. METHODS: NDD articles investigating BEVs in blood using polymer-based and/or IP-based BEV enrichment protocols were systematically identified, and protocols compared. Proteins used for BEV-enrichment and/or post-enrichment were assessed for CNS- and brain-cell-type- specificity; extracellular domains (ECD+); and presence in EV-databases. RESULTS: 82.1% of studies used polymer-based (ExoQuick) EV-enrichment, and 92.3% used L1CAM for IP-based BEV-enrichment. Centrifugation times differed across studies. 26.8% of 82 proteins systematically identified were CNS-specific: 50% ECD+, 77.3% were listed in EV- databases. DISCUSSION: We identified protocol steps requiring standardization, and recommend additional CNS-specific proteins that can be used for BEV-enrichment or as BEV-biomarkers.

18.
Commun Med (Lond) ; 3(1): 116, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612423

RESUMO

BACKGROUND: As the COVID-19 pandemic continues to evolve, novel vaccines need to be developed that are readily manufacturable and provide clinical efficacy against emerging SARS-CoV-2 variants. Virus-like particles (VLPs) presenting the spike antigen at their surface offer remarkable benefits over other vaccine antigen formats; however, current SARS-CoV-2 VLP vaccines candidates in clinical development suffer from challenges including low volumetric productivity, poor spike antigen density, expression platform-driven divergent protein glycosylation and complex upstream/downstream processing requirements. Despite their extensive use for therapeutic protein manufacturing and proven ability to produce enveloped VLPs, Chinese Hamster Ovary (CHO) cells are rarely used for the commercial production of VLP-based vaccines. METHODS: Using CHO cells, we aimed to produce VLPs displaying the full-length SARS-CoV-2 spike. Affinity chromatography was used to capture VLPs released in the culture medium from engineered CHO cells expressing spike. The structure, protein content, and glycosylation of spikes in VLPs were characterized by several biochemical and biophysical methods. In vivo, the generation of neutralizing antibodies and protection against SARS-CoV-2 infection was tested in mouse and hamster models. RESULTS: We demonstrate that spike overexpression in CHO cells is sufficient by itself to generate high VLP titers. These VLPs are evocative of the native virus but with at least three-fold higher spike density. In vivo, purified VLPs elicit strong humoral and cellular immunity at nanogram dose levels which grant protection against SARS-CoV-2 infection. CONCLUSIONS: Our results show that CHO cells are amenable to efficient manufacturing of high titers of a potently immunogenic spike protein-based VLP vaccine antigen.


Virus-like particles (VLPs) have a structure that is similar to viruses but they cannot cause infection or illness. If VLPs are injected into the body they produce an immune response similar to that seen following infection by a virus. This means that VLPs can be used as vaccines against viruses that cause illness in people. Many drugs, named biologics, are manufactured using living cells, including cells that were originally derived from Chinese Hamster Ovaries (CHO cells). We developed a simple method to produce VLPs similar to the SARS-CoV-2 virus in CHO cells. We show that vaccination of rodents with these VLPs prevents them from becoming ill following infection with SARS-CoV-2. These VLPs could become a part of an alternative, easily produced vaccine for the prevention of COVID-19 in humans.

19.
Ann Neurol ; 70(5): 751-63, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22162058

RESUMO

OBJECTIVE: Blood-derived myeloid antigen-presenting cells (APCs) account for a significant proportion of the leukocytes found within lesions of multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE). These APCs along with activated microglia are thought to be pivotal in the initiation of the central nervous system (CNS)-targeted immune response in MS and EAE. However, the exact molecules that direct the migration of myeloid cells from the periphery across the blood-brain barrier (BBB) remain largely unknown. METHODS: We identified Ninjurin-1 in a proteomic screen of human BBB endothelial cells (ECs). We assessed the expression of Ninjurin-1 by BBB-ECs and immune cells, and we determined the role of Ninjurin-1 in immune cell migration to the CNS in vivo in EAE mice. RESULTS: Ninjurin-1 was found to be weakly expressed in the healthy human and mouse CNS but upregulated on BBB-ECs and on infiltrating APCs during the course of EAE and in active MS lesions. In human peripheral blood, Ninjurin-1 was predominantly expressed by monocytes, whereas it was barely detectable on T and B lymphocytes. Moreover, Ninjurin-1 neutralization specifically abrogated the adhesion and migration of human monocytes across BBB-ECs, without affecting lymphocyte recruitment. Finally, Ninjurin-1 blockade reduced clinical disease activity and histopathological indices of EAE and decreased infiltration of macrophages, dendritic cells, and APCs into the CNS. INTERPRETATION: Our study uncovers an important cell-specific role for Ninjurin-1 in the transmigration of inflammatory APCs across the BBB and further emphasizes the importance of myeloid cell recruitment during the development of neuroinflammatory lesions.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Movimento Celular/fisiologia , Sistema Nervoso Central/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Células Mieloides/citologia , Células Mieloides/metabolismo , Fatores de Crescimento Neural/metabolismo , Animais , Linfócitos B/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Linfócitos T/metabolismo
20.
Methods Mol Biol ; 2549: 345-357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35218529

RESUMO

Automated high-throughput immunoassays are emerging as reliable analytic techniques for the quantitative detection of proteins from a variety of sample types. Herein, we describe a method using the Protein Simple Wes capillary-based automated immunoassays platform for the quantification of His- and HA-tagged antibody transcytosis across an in vitro transwell blood-brain barrier (BBB) model. Compared to conventional ELISA, fluorescence, and Mass Spec-based detection approaches, Wes provides comparable datasets with additional information regarding size, aggregation, and potential degradation of samples before and after BBB transcytosis. In this chapter, we have benchmarked our Wes technique against ELISA and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), using known BBB crossing (FC5) and non-crossing (A20.1) single domain antibodies.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Anticorpos/química , Barreira Hematoencefálica/metabolismo , Cromatografia Líquida , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Imunoensaio , Espectrometria de Massas em Tandem , Transcitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA