Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 10(12): e32620, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39183883

RESUMO

For the first time, different pollution indices and a receptor model have been used to quantify eco-environmental and health risk assessments as well as identify the sources of potentially toxic elements in soil along the Barapukuria Coal Mine (BCM). Individual indices include enrichment and contamination factors showing the soil samples are moderately to highly contaminated by arsenic, cobalt, chromium, copper, lead, and zinc and heavily contaminated by sulfur. According to the geo-accumulation index, there is significant pollution with arsenic (1.24 ± 0.38), lead (1.49 ± 0.58), cobalt (1.49 ± 0.58), and sulfur (1.63 ± 0.38). Modified hazard quotient and ecological risk factor values also suggest low to moderate environmental risk hazards from the same elements. The nemerow pollution index, pollution load index, nemerow risk index, ecological risk index, and toxic risk index of soil range from 1.65 to 3.03, 0.82-1.23, 11-26, 77-165, and 6.82-11.76 suggest low toxic risk and moderate pollution, among other synergistic indices. Health risk assessment indicates that iron poses lower cancer risk for children than adults, while both face unacceptable cancer risks from inhaling chromium, cobalt, or arsenic. Principal component and phylogenetic cluster analysis extracted by the multiple linear regression with the absolute principal component score (APCS-MLR) model refer to the fact that manganese, iron, titanium, and nickel have originated from geogenic sources, while coal mine effluents enrich elements like arsenic, chromium, zinc, lead, uranium, sulfur, thorium, and zinc and phosphorous sourced from agriculture. In addition, geogenic and anthropogenic sources, including mine and agriculture activities, could potentially pollute the soil and ecosystem. The findings are crucial for regional and national planners in devising strategies to mitigate potentially toxic element pollution in soil along coal mine areas.

2.
Mar Pollut Bull ; 192: 115103, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37276710

RESUMO

Elemental composition, multivariate statistical analyses with the absolute principal component score-multiple linear regression (APCS-MLR) model, and different pollution indices in Upper and Lower Southwestern Ganges-Brahmaputra-Meghna (GBM) delta sediments were studied to characterize pollution, ecological risk and quantify potential toxic element sources of the area. Toxic metals concentrations were higher in Lower Delta and individual pollution indices showed Upper Delta was moderately polluted by arsenic, chromium, cobalt, copper and lead, and Lower Delta was moderately-strongly polluted by the same metals. Synergistic indices include Potential Ecological, Toxic, Nemerow, and Pollution Risk indices in Upper and Lower Delta sediment ranged from 47.17-128.07, 2.03-12.19, 29.92-65.42, 0.28-1.62, and 69.17-246.90, 8.00-13.47, 20.53-152.92, 1.18-1.58, indicated low and moderate risk pollution, respectively. Statistical models represent the metals dominantly originated from nature for Upper Delta, and both natural and anthropogenic activities contributed to Lower Delta sediment. The study found that the modern deposit in Lower Delta became more contaminated and thus enhanced ecological risk.


Assuntos
Arsênio , Metais Pesados , Poluentes Químicos da Água , Rios , Bangladesh , Arsênio/análise , Metais Pesados/análise , Poluição Ambiental/análise , Monitoramento Ambiental , Medição de Risco , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA