Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Stroke ; 55(4): 1015-1024, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38275117

RESUMO

BACKGROUND: The dynamics of blood clot (combination of Hb [hemoglobin], fibrin, and a higher concentration of aggregated red blood cells) formation within the hematoma of an intracerebral hemorrhage is not well understood. A quantitative neuroimaging method of localized coagulated blood volume/distribution within the hematoma might improve clinical decision-making. METHODS: The deoxyhemoglobin of aggregated red blood cells within extravasated blood exhibits a higher magnetic susceptibility due to unpaired heme iron electrons. We propose that coagulated blood, with higher aggregated red blood cell content, will exhibit (1) a higher positive susceptibility than noncoagulated blood and (2) increase in fibrin polymerization-restricted localized diffusion, which can be measured noninvasively using quantitative susceptibility mapping and diffusion tensor imaging. In this serial magnetic resonance imaging study, we enrolled 24 patients with acute intracerebral hemorrhage between October 2021 to May 2022 at a stroke center. Patients were 30 to 70 years of age and had a hematoma volume >15 cm3 and National Institutes of Health Stroke Scale score >1. The patients underwent imaging 3×: within 12 to 24 (T1), 36 to 48 (T2), and 60 to 72 (T3) hours of last seen well on a 3T magnetic resonance imaging system. Three-dimensional anatomic, multigradient echo and 2-dimensional diffusion tensor images were obtained. Hematoma and edema volumes were calculated, and the distribution of coagulation was measured by dynamic changes in the susceptibilities and fractional anisotropy within the hematoma. RESULTS: Using a coagulated blood phantom, we demonstrated a linear relationship between the percentage coagulation and susceptibility (R2=0.91) with a positive red blood cell stain of the clot. The quantitative susceptibility maps showed a significant increase in hematoma susceptibility (T1, 0.29±0.04 parts per millions; T2, 0.36±0.04 parts per millions; T3, 0.45±0.04 parts per millions; P<0.0001). A concomitant increase in fractional anisotropy was also observed with time (T1, 0.40±0.02; T2, 0.45±0.02; T3, 0.47±0.02; P<0.05). CONCLUSIONS: This quantitative neuroimaging study of coagulation within the hematoma has the potential to improve patient management, such as safe resumption of anticoagulants, the need for reversal agents, the administration of alteplase to resolve the clot, and the need for surgery.


Assuntos
Acidente Vascular Cerebral Hemorrágico , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral Hemorrágico/complicações , Imagem de Tensor de Difusão , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/complicações , Hemorragia Cerebral/complicações , Imageamento por Ressonância Magnética/métodos , Hematoma/complicações , Coagulação Sanguínea , Hemoglobinas , Fibrina
2.
Neurocrit Care ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085503

RESUMO

BACKGROUND: We developed a noninvasive biomarker to quantify the rate of ventricular blood clearance in patients with intracerebral hemorrhage and extension to the ventricles-intraventricular hemorrhage. METHODS: We performed magnetic resonance imaging in 26 patients at 1, 14, 28, and 42 days of onset and measured their hematoma volume (HV), ventricular blood volume (VBV), and two diffusion metrics: fractional anisotropy (FA), and mean diffusivity (MD). The ipasilesional ventricular cerebral spinal fluid's FA and MD were associated with VBV and stroke severity scores (National Institute of Health Stroke Scale [NIHSS]). A subcohort of 14 patients were treated with external ventricular drain (EVD). A generalized linear mixed model was applied for statistical analysis. RESULTS: At day 1, the average HVs and NIHSS scores were 14.6 ± 16.7 cm3 and 16 ± 8, respectively. A daily rate of 2.1% and 1.3% blood clearance/resolution were recorded in HV and VBV, respectively. Ipsilesional ventricular FA (vFA) and ventricular MD (vMD) were simultaneously decreased (vFA = 1.3% per day, posterior probability [PP] > 99%) and increased (vMD = 1.5% per day, PP > 99%), respectively. Patients with EVD exhibited a faster decline in vFA (1.5% vs. 1.1% per day) and an increase in vMD (1.8% vs. 1.5% per day) as compared with patients without EVD. Temporal change in vMD was associated with VBV; a 1.00-cm3 increase in VBV resulted in a 5.2% decrease in vMD (PP < 99%). VBV was strongly associated with NIHSS score (PP = 97-99%). A larger cerebral spinal fluid drained volume was associated with a greater decrease (PP = 83.4%) in vFA, whereas a smaller volume exhibited a greater increase (PP = 94.8%) in vMD. CONCLUSIONS: In conclusion, vFA and vMD may serve as biomarkers for VBV status.

3.
Stem Cells ; 37(11): 1481-1491, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31529663

RESUMO

Cellular therapy is a promising investigational modality to enhance poststroke recovery. We conducted a single-arm, phase I clinical trial to determine the safety and feasibility of intravenous (IV) administration of autologous bone marrow mononuclear cells (MNCs) after acute ischemic stroke (AIS). Patients with moderate severity of AIS underwent bone marrow harvest followed by IV reinfusion of MNCs within 24-72 hours of onset. A target dose of 10 million cells per kilogram was chosen based on preclinical data. Patients were followed up daily during hospitalization and at 1, 3, 6, 12, and 24 months for incidence of adverse events using laboratory, clinical (12 months), and radiological (24 months) parameters. The trial was powered to detect severe adverse events (SAEs) with incidences of at least 10% and planned to enroll 30 patients. Primary outcomes were study-related SAEs and the proportion of patients successfully completing study intervention. A propensity score-based matched control group was used for the estimation of effect size (ES) for day-90 modified Rankin score (mRS). There were no study-related SAEs and, based on a futility analysis, enrolment was stopped after 25 patients. All patients successfully completed study intervention and most received the target dose. Secondary analysis estimated the ES to be a reduction of 1 point (95% confidence interval: 0.33-1.67) in median day-90 mRS for treated patients as compared with the matched control group. Bone marrow harvest and infusion of MNCs is safe and feasible in patients with AIS. The estimated ES is helpful in designing future randomized controlled trials. Stem Cells 2019;37:1481-1491.


Assuntos
Células da Medula Óssea/citologia , Transplante de Medula Óssea/efeitos adversos , Isquemia Encefálica/terapia , Leucócitos Mononucleares/citologia , Acidente Vascular Cerebral/terapia , Administração Intravenosa , Idoso , Células da Medula Óssea/fisiologia , Transplante de Medula Óssea/métodos , Isquemia Encefálica/diagnóstico por imagem , Imagem de Tensor de Difusão , Estudos de Viabilidade , Feminino , Humanos , Leucócitos Mononucleares/fisiologia , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/diagnóstico por imagem , Resultado do Tratamento
5.
Am J Hum Genet ; 93(2): 197-210, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23810381

RESUMO

White matter hyperintensities (WMHs) of the brain are important markers of aging and small-vessel disease. WMHs are rare in healthy children and, when observed, often occur with comorbid neuroinflammatory or vasculitic processes. Here, we describe a complex 4 kb deletion in 2q36.3 that segregates with early childhood communication disorders and WMH in 15 unrelated families predominantly from Southeast Asia. The premature brain aging phenotype with punctate and multifocal WMHs was observed in ~70% of young carrier parents who underwent brain MRI. The complex deletion removes the penultimate exon 3 of TM4SF20, a gene encoding a transmembrane protein of unknown function. Minigene analysis showed that the resultant net loss of an exon introduces a premature stop codon, which, in turn, leads to the generation of a stable protein that fails to target to the plasma membrane and accumulates in the cytoplasm. Finally, we report this deletion to be enriched in individuals of Vietnamese Kinh descent, with an allele frequency of about 1%, embedded in an ancestral haplotype. Our data point to a constellation of early language delay and WMH phenotypes, driven by a likely toxic mechanism of TM4SF20 truncation, and highlight the importance of understanding and managing population-specific low-frequency pathogenic alleles.


Assuntos
Senilidade Prematura/genética , Sequência de Bases , Predisposição Genética para Doença , Transtornos do Desenvolvimento da Linguagem/genética , Leucoencefalopatias/genética , Deleção de Sequência , Tetraspaninas/genética , Idade de Início , Senilidade Prematura/complicações , Senilidade Prematura/etnologia , Senilidade Prematura/patologia , Povo Asiático , Encéfalo/metabolismo , Encéfalo/patologia , Criança , Pré-Escolar , Cromossomos Humanos Par 2 , Éxons , Feminino , Humanos , Transtornos do Desenvolvimento da Linguagem/complicações , Transtornos do Desenvolvimento da Linguagem/etnologia , Transtornos do Desenvolvimento da Linguagem/patologia , Leucoencefalopatias/complicações , Leucoencefalopatias/etnologia , Leucoencefalopatias/patologia , Imageamento por Ressonância Magnética , Masculino , Dados de Sequência Molecular , Linhagem , Análise de Sequência de DNA
7.
J Magn Reson Imaging ; 44(5): 1293-1300, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27126898

RESUMO

PURPOSE: Postacquisition combination of three-dimensional T2-weighted (T2w) and fluid-attenuated inversion recovery (FLAIR) images can improve the visualization of brain lesions in multiple sclerosis (MS). However, an optimal way to combine these images has not been described so far. The main objective of this study is to investigate an optimal combination of T2w and FLAIR to improve the conspicuity of MS lesions. MATERIALS AND METHODS: We determined the parameters for a generalized multiplicative image combination which maximize the contrast-to-noise ratio (CNR) between lesions and normal-appearing brain tissue through simulations and verified experimentally. MRI data from 11 MS patients acquired at 3 Tesla were retrospectively analyzed using the proposed approach and compared with conventional FLAIR, and to images obtained by direct multiplication of T2w and FLAIR (FLAIR2 ). Image quality was assessed by region-of-interest analysis. In addition, to evaluate the degree of cerebrospinal fluid (CSF) suppression, CSF-to-gray matter (CSF/GM) ratio was calculated. Reduction in global image contrast was assessed by computing the reduction in the contrast of mid-level intensity values. RESULTS: An optimal combination was found to be the third order expression: FLAIR3 = FLAIR1.55 × T2w1.45 . Compared with FLAIR, the lesion CNR was significantly increased by 1.9× (P < 0.005) and 2.5× (P < 0.001) using FLAIR2 and FLAIR3 , respectively. CSF/GM ratio was increased by 1.7× in FLAIR2 (P < 0.001) compared with FLAIR, while it was reduced to 0.7× on FLAIR3 (P < 0.05). The mid-intensity contrast was preserved on FLAIR2 (P = 0.2), and decreased by 29% on FLAIR3 (P < 0.001). CONCLUSION: These results show that the optimized combination of FLAIR and T2w can improve MS lesion conspicuity. J. Magn. Reson. Imaging 2016;44:1293-1300.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Aumento da Imagem/métodos , Imagem Multimodal/métodos , Esclerose Múltipla/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Encéfalo/patologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Substância Branca/patologia
8.
J Magn Reson Imaging ; 39(4): 835-41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24151096

RESUMO

PURPOSE: To evaluate longitudinal changes in renal oxygenation and diffusion measurements in a model of reversible unilateral ureteral obstruction (rUUO) which has been shown to induce chronic renal functional deficits in a strain dependent way. C57BL/6 mice show higher degree of functional deficit compared with BALB/c mice. Because hypoxia and development of fibrosis are associated with chronic kidney diseases and are responsible for progression, we hypothesized that MRI measurements would be able to monitor the longitudinal changes in this model and will show strain dependent differences in response. Here blood oxygenation level dependent (BOLD) and diffusion MRI measurements were performed at three time points over a 30 day period in mice with rUUO. MATERIALS AND METHODS: The studies were performed on a 4.7T scanner with the mice anesthetized with isoflurane before UUO, 2 and 28 days postrelease of 6 days of obstruction. RESULTS: We found at the early time point (∼2 days after releasing the obstruction), the relative oxygenation in C57Bl/6 mice were lower compared with BALB/c. Diffusion measurements were lower at this time point and reached statistical significance in BALB/c CONCLUSION: These methods may prove valuable in better understanding the natural progression of kidney diseases and in evaluating novel interventions to limit progression.


Assuntos
Modelos Animais de Doenças , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Oxigênio/sangue , Obstrução Ureteral/patologia , Obstrução Ureteral/fisiopatologia , Algoritmos , Animais , Humanos , Aumento da Imagem/métodos , Estudos Longitudinais , Camundongos , Camundongos Endogâmicos C57BL , Consumo de Oxigênio , Projetos Piloto , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Brain Connect ; 13(8): 498-507, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36097789

RESUMO

Objective: The primary aim of the research was to compare the impact of postischemic and hemorrhagic stroke on brain connectivity and recovery using resting-state functional magnetic resonance imaging. Methods and Procedures: We serially imaged 20 stroke patients, 10 with ischemic stroke (IS) and 10 with intracerebral hemorrhage (ICH), at 1, 3, and 12 months (1M, 3M, and 12M) after ictus. Data from 10 healthy volunteers were obtained from a publically available imaging data set. All functional and structural images underwent standard processing for brain extraction, realignment, serial registration, unwrapping, and denoising using SPM12. A seed-based group analysis using CONN software was used to evaluate the default mode network and the sensorimotor network connections by applying bivariate correlation and hemodynamic response function weighting. Results: In comparison with healthy controls, both IS and ICH exhibited disrupted interactions (decreased connectivity) between these two networks at 1M. Interactions then increased by 12M in each group. Temporally, each group exhibited a minimal increase in connectivity at 3M compared with 12M. Overall, the ICH patients exhibited a greater magnitude of connectivity disruption compared with IS patients, despite a significant intrasubject reduction in hematoma volume. We did not observe any significant correlation between change in connectivity and recovery as measured on the National Institutes of Health Stroke Scale (NIHSS) at any time point. Conclusions: These findings demonstrate that the largest changes in functional connectivity occur earlier (3M) rather than later (12M) and show subtle differences between IS and ICH during recovery and should be explored further in larger samples.


Assuntos
Acidente Vascular Cerebral Hemorrágico , Acidente Vascular Cerebral , Humanos , Encéfalo , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Mapeamento Encefálico/métodos
10.
Transl Stroke Res ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37308620

RESUMO

Deep intracerebral hemorrhage (ICH) exerts a direct force on corticospinal tracts (CST) causing shape deformation. Using serial MRI, Generalized Procrustes Analysis (GPA), and Principal Components Analysis (PCA), we temporally evaluated the change in CST shape. Thirty-five deep ICH patients with ipsilesional-CST deformation were serially imaged on a 3T-MRI with a median imaging time of day-2 and 84 of onset. Anatomical and diffusion tensor images (DTI) were acquired. Using DTI color-coded maps, 15 landmarks were drawn on each CST and the centroids were computed in 3 dimensions. The contralesional-CST landmarks were used as a reference. The GPA outlined the shape coordinates and we superimposed the ipsilesional-CST shape at the two-time points. A multivariate PCA was applied to identify eigenvectors associated with the highest percentile of change. The first three principal components representing CST deformation along the left-right (PC1), anterior-posterior (PC2), and superior-inferior (PC3) respectively were responsible for 57.9% of shape variance. The PC1 (36.1%, p < 0.0001) and PC3 (9.58%, p < 0.01) showed a significant deformation between the two-time points. Compared to the contralesional-CST, the ipsilesional PC scores were significantly (p < 0.0001) different only at the first-timepoint. A significant positive association between the ipsilesional-CST deformation and hematoma volume was observed. We present a novel method to quantify CST deformation caused by ICH. Deformation most often occurs in left-right axis (PC1) and superior-inferior (PC3) directions. As compared to the reference, the significant temporal difference at the first time point suggests CST restoration over time.

11.
Stem Cells Transl Med ; 10(7): 943-955, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33689219

RESUMO

Bone marrow mononuclear cells (MNCs) attenuate secondary degeneration and enhance recovery in stroke animal models. In a nonrandomized clinical trial, we imaged 37 patients with stroke: 17 patients treated with MNCs (treated) and 20 patients who received standard of care (nontreated) at 1, 3, and 12 months onset of stroke on 3.0T MRI system. Three-dimensional anatomical and diffusion tensor images were obtained. The integrity of the corticospinal tract was assessed by measuring absolute and relative fractional anisotropy (FA) and mean diffusivity (MD) in the rostral pons (RP), posterior limb of the internal capsule, and corona radiata by drawing regions of interest. Infarct volume and stroke severity, which was assessed via the NIH Stroke Scale (NIHSS), were higher in the MNC group compared with the nontreated patients, which is a major limitation. Overall, the relative FA (rFA) of the nontreated patients exhibited continued reduction and an increase in relative MD (rMD) from 1 to 12 months, whereas despite larger infarcts and higher severity, treated patients displayed an increase in rFA from 3 to 12 months and no change in rMD. Contrary to the nontreated group, the treated patients' rFA was also significantly correlated (P < .05) with NIHSS score in the RP at all time points, whereas rMD at the last two.


Assuntos
Transplante de Medula Óssea , Neuroimagem , Tratos Piramidais , Acidente Vascular Cerebral , Células da Medula Óssea , Imagem de Tensor de Difusão , Humanos , Tratos Piramidais/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia
12.
Front Neurol ; 12: 764718, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917017

RESUMO

In most patients with intracerebral hemorrhage (ICH), the hematoma and perihematomal area decrease over the subsequent months but patients continue to exhibit neurological impairments. In this serial imaging study, we characterized microstructural and neurophysiological changes in the ICH-affected brain tissues and collected the National Institute of Health Stroke Scale (NIHSS) and modified Rankin Score (mRS), two clinical stroke scale scores. Twelve ICH patients were serially imaged on a 3T MRI at 1, 3, and 12 months (M) after injury. The hematoma and perihematomal volume masks were created and segmented using FLAIR imaging at 1 month which were applied to compute the susceptibilities (χ), fractional anisotropy (FA), mean diffusivity (MD), and cerebral blood flow (CBF) in the same tissues over time and in the matching contralesional tissues. At 3 M, there was a significant (p < 0.001) reduction in hematoma and perihematomal volumes. At 1 M, the χ, FA, and CBF were decreased in the perihematomal tissues as compared to the contralateral side, whereas MD increased. In the hematomal tissues, the χ increased whereas FA, MD, and CBF decreased as compared to the contralesional area at 1 M. Temporally, CBF in the hematoma and perihematomal tissues remained significantly (p < 0.05) lower compared with the contralesional areas whereas MD in the hematoma and χ in the perihematomal area increased. The NIHSS and mRS significantly correlated with hematoma and perihematomal volume but not with microstructural integrity. Our serial imaging studies provide new information on the long-term changes within the brain after ICH and our findings may have clinical significance that warrants future studies.

13.
NMR Biomed ; 23(10): 1158-65, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21162143

RESUMO

The noninvasive assessment of pancreatic islets would be an invaluable tool in advancing the treatment of type I diabetes and in understanding its pathophysiology. As shown previously in rodents, manganese-enhanced MRI (MEMRI) can be successfully used to quantify ß-cell function. In this study, we successfully applied this technique to isolated human pancreatic islets in both a static and, more significantly, MRI-compatible perfusion set-up. Unlike rodent islets, which produced a significant increase in the signal-to-noise ratio (SNR) when treated with 25 µM MnCl(2) or less, human islets demonstrated significant manganese uptake when exposed to an extracellular concentration of 50 µM MnCl(2). Nonspecific passive manganese uptake was present and quantified in a 15% SNR increase over the control group. However, glucose-induced manganese uptake caused an SNR increase equal to 45% over nonactivated islets. This corresponds to a statistically significant decrease in the T(1) relaxation time from 1501 ms for untreated islets to 1362 ms following passive uptake, and to 861 ms following glucose stimulation. As expected, no manganese cytotoxicity was measured, as shown by normal insulin secretion profiles. These data confirm the viability of MEMRI to assess isolated human islet functionality in vitro, and this technique shows promise for the monitoring of their performance in vivo following transplantation.


Assuntos
Ilhotas Pancreáticas/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Técnicas de Cultura de Tecidos/métodos , Humanos , Aumento da Imagem , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Manganês/farmacologia , Perfusão , Processamento de Sinais Assistido por Computador , Marcadores de Spin
14.
Front Neurosci ; 13: 888, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496934

RESUMO

PURPOSE: Perihematomal edema (PHE) occurs in patients with intracerebral hemorrhage (ICH) and is often used as surrogate of secondary brain injury. PHE resolves over time, but little is known about the functional integrity of the tissues that recover from edema. In a pig ICH model, we aimed to assess metabolic integrity of perihematoma tissues by using non-invasive magnetic resonance spectroscopy (MRS). MATERIALS AND METHODS: Fourteen male Yorkshire pigs with an average age of 8 weeks were intracerebrally injected with autologous blood to produce ICH. Proton MRS data were obtained at 1, 7, and 14 days after ICH using a whole-body 3.0T MRI system. Point-resolved spectroscopy (PRESS)-localized 2D chemical shift imaging (CSI) was acquired. The concentration of N-Acetylaspartate (NAA), Choline (Cho), and Creatine (Cr) were measured within the area of PHE, tissues adjacent to the injury with no or negligible edema (ATNE), and contralesional brain tissue. A linear mixed model was used to analyze the evolution of metabolites in perihematomal tissues, with p-value < 0.05 indicating statistical significance. RESULTS: The perihematoma volume gradually decreased from 2.38 ± 1.23 ml to 0.41 ± 0.780 ml (p < 0.001) over 2 weeks. Significant (p < 0.001) reductions in NAA, Cr, and Cho concentrations were found in the PHE and ATNE regions compared to the contralesional hemisphere at day 1 and 7 after ICH. All three metabolites were significantly (p < 0.001) restored in the PHE tissue on day 14, but remained persistently low in the ATNE area, and unaltered in the contralesional voxel. CONCLUSION: This study highlights the potential of MRS to probe salvageable tissues within the perihematoma in the sub-acute phase of ICH. Altered metabolites within the PHE and ATNE regions in addition to edema and hematoma volumes were explored as possible markers for tissue recovery. Perihematomal tissue with PHE demonstrated a more reversible injury compared to the tissue adjacent to the injury without edema, suggesting a potentially beneficial role of edema.

15.
Front Neurol ; 10: 154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30890995

RESUMO

Purpose: Ongoing post-stroke structural degeneration and neuronal loss preceding neuropsychological symptoms such as cognitive decline and depression are poorly understood. Various substructures of the limbic system have been linked to cognitive impairment. In this longitudinal study, we investigated the post-stroke macro- and micro-structural integrity of the limbic system using structural and diffusion tensor magnetic resonance imaging. Materials and Methods: Nineteen ischemic stroke patients (11 men, 8 women, average age 53.4 ± 12.3, range 18-75 years), with lesions remote from the limbic system, were serially imaged three times over 1 year. Structural and diffusion-tensor images (DTI) were obtained on a 3.0 T MRI system. The cortical thickness, subcortical volume, mean diffusivity (MD), and fractional anisotropy (FA) were measured in eight different regions of the limbic system. The National Institutes of Health Stroke Scale (NIHSS) was used for clinical assessment. A mixed model for multiple factors was used for statistical analysis, and p-values <0.05 was considered significant. Results: All patients demonstrated improved NIHSS values over time. The ipsilesional subcortical volumes of the thalamus, hippocampus, and amygdala significantly decreased (p < 0.05) and MD significantly increased (p < 0.05). The ipsilesional cortical thickness of the entorhinal and perirhinal cortices was significantly smaller than the contralesional hemisphere at 12 months (p < 0.05). The cortical thickness of the cingulate gyrus at 12 months was significantly decreased at the caudal and isthmus regions as compared to the 1 month assessment (p < 0.05). The cingulum fibers had elevated MD at the ipsilesional caudal-anterior and posterior regions compared to the corresponding contralesional regions. Conclusion: Despite the decreasing NIHSS scores, we found ongoing unilateral neuronal loss/secondary degeneration in the limbic system, irrespective of the lesion location. These results suggest a possible anatomical basis for post stroke psychiatric complications.

16.
Front Neurol ; 10: 141, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30858820

RESUMO

Purpose: Cell-based therapy offers new opportunities for the development of novel treatments to promote tissue repair, functional restoration, and cerebral metabolic balance. N-acetylasperate (NAA), Choline (Cho), and Creatine (Cr) are three major metabolites seen on proton magnetic resonance spectroscopy (MRS) that play a vital role in balancing the biochemical processes and are suggested as markers of recovery. In this preliminary study, we serially monitored changes in these metabolites in ischemic stroke patients who were treated with autologous bone marrow-derived mononuclear cells (MNCs) using non-invasive MRS. Materials and Methods: A sub-group of nine patients (3 male, 6 female) participated in a serial MRS study, as part of a clinical trial on autologous bone marrow cell therapy in acute ischemic stroke. Seven to ten million mononuclear cells were isolated from the patient's bone marrow and administered intravenously within 72 h of onset of injury. MRS data were obtained at 1, 3, and 6 months using a whole-body 3.0T MRI. Single voxel point-resolved spectroscopy (PRESS) was obtained within the lesion and contralesional gray matter. Spectral analysis was done using TARQUIN software and absolute concentration of NAA, Cho, and Cr was determined. National Institute of Health Stroke Scale (NIHSS) was serially recoreded. Two-way analysis of variance was performed and p < 0.05 considered statistically significant. Results: All metabolites showed statistically significant or clear trends toward lower ipsilesional concentrations compared to the contralesional side at all time points. Statistically significant reductions were found in ipsilesional NAA at 1M and 3M, Cho at 6M, and Cr at 1M and 6M (p < 0.03), compared to the contralesional side. Temporally, ipsilesional NAA increased between 3M and 6M (p < 0.01). On the other hand, ipsilesional Cho showed continued decline till 6M (p < 0.01). Ipsilesional Cr was stable over time. Contralesional metabolites were relatively stable over time, with only Cr showing a reduction 3M (p < 0.02). There was a significant (p < 0.03) correlation between ipsilesional NAA and NIHSS at 3M follow-up. Conclusion: Serial changes in metabolites suggest that MRS can be applied to monitor therapeutic changes. Post-treatment increasing trends of NAA concentration and significant correlation with NIHSS support a potential therapeutic effect.

17.
J Cereb Blood Flow Metab ; 38(3): 375-381, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29292651

RESUMO

Iron released after intracerebral hemorrhage (ICH) is damaging to the brain. Measurement of the content and distribution of iron in the hematoma could predict brain damage. In this study, 16 Yorkshire piglets were subjected to autologous blood injection ICH model and studied longitudinally using quantitative susceptibility mapping and R2* relaxivity MRI on day 1 and 7 post-ICH. Phantom calibration of susceptibility demonstrated (1) iron distribution heterogeneity within the hematoma and (2) natural absorption of iron from 154 ± 78 µg/mL (day 1) to 127 ± 33 µg/mL (day 7). R2* in the hematoma decreased at day 7. This method could be adopted for ICH in humans.


Assuntos
Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/metabolismo , Ferro/metabolismo , Neuroimagem/métodos , Animais , Hematoma/diagnóstico por imagem , Hematoma/metabolismo , Imageamento por Ressonância Magnética , Masculino , Imagens de Fantasmas , Sus scrofa , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA