Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(11): e1011617, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37943957

RESUMO

The islets of Langerhans are critical endocrine micro-organs that secrete hormones regulating energy metabolism in animals. Insulin and glucagon, secreted by beta and alpha cells, respectively, are responsible for metabolic switching between fat and glucose utilization. Dysfunction in their secretion and/or counter-regulatory influence leads to diabetes. Debate in the field centers on the cytoarchitecture of islets, as the signaling that governs hormonal secretion depends on structural and functional factors, including electrical connectivity, innervation, vascularization, and physical proximity. Much effort has therefore been devoted to elucidating which architectural features are significant for function and how derangements in these features are correlated or causative for dysfunction, especially using quantitative network science or graph theory characterizations. Here, we ask if there are non-local features in islet cytoarchitecture, going beyond standard network statistics, that are relevant to islet function. An example is ring structures, or cycles, of α and δ cells surrounding ß cell clusters or the opposite, ß cells surrounding α and δ cells. These could appear in two-dimensional islet section images if a sphere consisting of one cell type surrounds a cluster of another cell type. To address these issues, we developed two independent computational approaches, geometric and topological, for such characterizations. For the latter, we introduce an application of topological data analysis to determine locations of topological features that are biologically significant. We show that both approaches, applied to a large collection of islet sections, are in complete agreement in the context both of developmental and diabetes-related changes in islet characteristics. The topological approach can be applied to three-dimensional imaging data for islets as well.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Insulina/metabolismo , Glucagon , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34362840

RESUMO

Pancreatic ß cells operate with a high rate of membrane recycling for insulin secretion, yet endocytosis in these cells is not fully understood. We investigate this process in mature mouse ß cells by genetically deleting dynamin GTPase, the membrane fission machinery essential for clathrin-mediated endocytosis. Unexpectedly, the mice lacking all three dynamin genes (DNM1, DNM2, DNM3) in their ß cells are viable, and their ß cells still contain numerous insulin granules. Endocytosis in these ß cells is severely impaired, resulting in abnormal endocytic intermediates on the plasma membrane. Although insulin granules are abundant, their release upon glucose stimulation is blunted in both the first and second phases, leading to hyperglycemia and glucose intolerance in mice. Dynamin triple deletion impairs insulin granule exocytosis and decreases intracellular Ca2+ responses and granule docking. The docking defect is correlated with reduced expression of Munc13-1 and RIM1 and reorganization of cortical F-actin in ß cells. Collectively, these findings uncover the role of dynamin in dense-core vesicle endocytosis and secretory capacity. Insulin secretion deficiency in the absence of dynamin-mediated endocytosis highlights the risk of impaired membrane trafficking in endocrine failure and diabetes pathogenesis.


Assuntos
Dinaminas/genética , Hiperglicemia/etiologia , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Animais , Glicemia/genética , Glicemia/metabolismo , Sinalização do Cálcio/genética , Vesículas de Núcleo Denso/metabolismo , Dinamina II/genética , Dinaminas/metabolismo , Endocitose/fisiologia , Feminino , Proteínas de Ligação ao GTP/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo
3.
Anal Chem ; 92(2): 1978-1987, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31876140

RESUMO

Cellulose paper has strong potential as an analytical platform owing to its unique characteristics. In the present study, we investigated a procedure for functionalizing the surface of cellulose paper by dip-coating a mixture of a functional polymer and a perfluoroalkylated surfactant (surfactant 1). The functional polymer comprised a mixture of methyl methacrylate and poly(ethylene glycol) methacrylate monomers. The monomer ratio in the functional polymer affected the hydrophilicity and water absorbance of the cellulose paper after dip-coating. Furthermore, the presence of surfactant 1 during dip-coating promoted the surface segregation of poly(ethylene glycol) (PEG) moieties in the polymer, which enhanced the hydrophilicity, prevented nonspecific protein adsorption, and maintained the water absorbance of the dip-coated cellulose paper. Dip-coating with another functional polymer containing biotin groups produced a cellulose paper with a biotin-decorated surface in a one-step procedure. The displayed biotin groups immobilized avidin on the surface, and the PEG moieties in the polymer prevented nonspecific protein adsorption. We then immobilized a thrombin-binding DNA aptamer on the avidin-immobilized cellulose paper to prepare a paper-based analytical device. It is possible to visualize thrombin in model solutions and serum using the paper-based analytical device.


Assuntos
Celulose/química , Metacrilatos/química , Metilmetacrilatos/química , Papel , Polietilenoglicóis/química , Espectrometria de Fluorescência/métodos , Animais , Aptâmeros de Nucleotídeos/química , Biotina/química , Biotinilação , Bovinos , Corantes Fluorescentes/química , Humanos , Ácidos Nucleicos Imobilizados/química , Espectrometria de Fluorescência/instrumentação , Tensoativos/química , Trombina/análise
4.
Am J Pathol ; 188(4): 876-890, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29366680

RESUMO

In cystic fibrosis (CF), there is early destruction of the exocrine pancreas, and this results in a unique form of diabetes that affects approximately half of adult CF individuals. An animal model of cystic fibrosis-related diabetes has been developed in the ferret, which progresses through phases of glycemic abnormalities because of islet remodeling during and after exocrine destruction. Herein, we quantified the pancreatic histopathological changes that occur during these phases. There was an increase in percentage ductal, fat, and islet area in CF ferrets over time compared with age-matched wild-type controls. We also quantified islet size, shape, islet cell composition, cell proliferation (Ki-67), and expression of remodeling markers (matrix metalloprotease-7, desmin, and α-smooth muscle actin). Pancreatic ducts were dilated with scattered proliferating cells and were surrounded by activated stellate cells, indicative of tissue remodeling. The timing of islet and duct proliferation, stellate cell activation, and matrix remodeling coincided with the previously published stages of glycemic crisis and inflammation. This mapping of remodeling events in the CF ferret pancreas provides insights into early changes that control glycemic intolerance and subsequent recovery during the evolution of CF pancreatic disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Furões/metabolismo , Técnicas de Inativação de Genes , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Tecido Adiposo/patologia , Envelhecimento/patologia , Animais , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Humanos , Hiperplasia , Antígeno Ki-67/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Modelos Biológicos , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Regulação para Cima/genética
5.
Am J Physiol Regul Integr Comp Physiol ; 314(2): R294-R303, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29118024

RESUMO

Environmental pollutants acting as endocrine-disrupting chemicals (EDCs) are recognized as potential contributors to metabolic disease pathogenesis. One such pollutant, arsenic, contaminates the drinking water of ~100 million people globally and has been associated with insulin resistance and diabetes in epidemiological studies. Despite these observations, the precise metabolic derangements induced by arsenic remain incompletely characterized. In the present study, the impact of arsenic on in vivo metabolic physiology was examined in 8-wk-old male C57BL/6J mice exposed to 50 mg/l inorganic arsenite in their drinking water for 8 wk. Glucose metabolism was assessed via in vivo metabolic testing, and feeding behavior was analyzed using indirect calorimetry in metabolic cages. Pancreatic islet composition was assessed via immunofluorescence microscopy. Arsenic-exposed mice exhibited impaired glucose tolerance compared with controls; however, no difference in peripheral insulin resistance was noted between groups. Instead, early insulin release during glucose challenge was attenuated relative to the rise in glycemia. Despite decreased insulin secretion, pancreatic ß-cell mass was not altered, suggesting that arsenic primarily disrupts ß-cell function. Finally, metabolic cage analyses revealed that arsenic exposure induced novel alterations in the diurnal rhythm of food intake and energy metabolism. Taken together, these data suggest that arsenic exposure impairs glucose tolerance through functional impairments in insulin secretion from ß-cells rather than by augmenting peripheral insulin resistance. Further elucidation of the mechanisms underlying arsenic-induced behavioral and ß-cell-specific metabolic disruptions will inform future intervention strategies to address this ubiquitous environmental contaminant and novel diabetes risk factor.


Assuntos
Arsenitos/toxicidade , Glicemia/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Metabolismo Energético/efeitos dos fármacos , Intolerância à Glucose/induzido quimicamente , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/sangue , Compostos de Sódio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Intolerância à Glucose/sangue , Intolerância à Glucose/patologia , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos Endogâmicos C57BL , Via Secretória/efeitos dos fármacos
6.
Hum Mol Genet ; 24(6): 1646-54, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25398947

RESUMO

Non-coding variation within TCF7L2 remains the strongest genetic determinant of type 2 diabetes risk in humans. A considerable effort has been placed in understanding the functional roles of TCF7L2 in pancreatic beta cells, despite evidence of TCF7L2 expression in various peripheral tissues important in glucose homeostasis. Here, we use a humanized mouse model overexpressing Tcf7l2, resulting in glucose intolerance, to infer the contribution of Tcf7l2 overexpression in beta cells and in other tissues to the metabolic phenotypes displayed by these mice. Restoring Tcf7l2 expression specifically in beta cells to endogenous levels, in face of its overexpression elsewhere, results in impaired insulin secretion, reduced beta cell number and islet area, corroborating data obtained in humans showing similar phenotypes as a result of manipulations leading to Tcf7l2 loss of function. Interestingly, the persistent overexpression of Tcf7l2 in non-pancreatic tissues results in a significant worsening in glucose tolerance in vivo, indicating that Tcf7l2 overexpression in beta cells does not account for the glucose intolerance in the Tcf7l2 overexpression mouse model. Collectively, these data posit that Tcf7l2 plays key roles in glucose metabolism through actions beyond pancreatic beta cells, and further points to functionally opposing cell-type specific effects for Tcf7l2 on the maintenance of balanced glucose metabolism, thereby urging a careful examination of its role in non-pancreatic tissues as well as its composite metabolic effects across distinct tissues. Uncovering these roles may lead to new therapeutic targets for type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Intolerância à Glucose/genética , Glucose/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Animais , Modelos Animais de Doenças , Expressão Gênica , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Transgênicos , Regulação para Cima
7.
Phys Biol ; 13(2): 025004, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27063927

RESUMO

Plasma glucose in mammals is regulated by hormones secreted by the islets of Langerhans embedded in the exocrine pancreas. Islets consist of endocrine cells, primarily α, ß, and δ cells, which secrete glucagon, insulin, and somatostatin, respectively. ß cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Varying demands and available nutrients during development produce changes in the local connectivity of ß cells in an islet. We showed in earlier work that graph theory provides a framework for the quantification of the seemingly stochastic cyto-architecture of ß cells in an islet. To quantify the dynamics of endocrine connectivity during development requires a framework for characterizing changes in the probability distribution on the space of possible graphs, essentially a Fokker-Planck formalism on graphs. With large-scale imaging data for hundreds of thousands of islets containing millions of cells from human specimens, we show that this dynamics can be determined quantitatively. Requiring that rearrangement and cell addition processes match the observed dynamic developmental changes in quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that there is a transient shift in preferred connectivity for ß cells between 1-35 weeks and 12-24 months.


Assuntos
Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/crescimento & desenvolvimento , Contagem de Células , Pré-Escolar , Gráficos por Computador , Simulação por Computador , Glucagon/análise , Glucagon/metabolismo , Humanos , Lactente , Recém-Nascido , Insulina/análise , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Modelos Biológicos , Processos Estocásticos
8.
PLoS Comput Biol ; 11(8): e1004423, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26266953

RESUMO

Pancreatic islets of Langerhans consist of endocrine cells, primarily α, ß and δ cells, which secrete glucagon, insulin, and somatostatin, respectively, to regulate plasma glucose. ß cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Due to the central functional significance of this local connectivity in the placement of ß cells in an islet, it is important to characterize it quantitatively. However, quantification of the seemingly stochastic cytoarchitecture of ß cells in an islet requires mathematical methods that can capture topological connectivity in the entire ß-cell population in an islet. Graph theory provides such a framework. Using large-scale imaging data for thousands of islets containing hundreds of thousands of cells in human organ donor pancreata, we show that quantitative graph characteristics differ between control and type 2 diabetic islets. Further insight into the processes that shape and maintain this architecture is obtained by formulating a stochastic theory of ß-cell rearrangement in whole islets, just as the normal equilibrium distribution of the Ornstein-Uhlenbeck process can be viewed as the result of the interplay between a random walk and a linear restoring force. Requiring that rearrangements maintain the observed quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that ß-cell rearrangement is dependent on its connectivity in order to maintain an optimal cluster size in both normal and T2D islets.


Assuntos
Biologia Computacional/métodos , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Processos Estocásticos
9.
Diabetologia ; 58(8): 1836-44, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26021489

RESUMO

AIMS/HYPOTHESIS: Several forkhead box (FOX) transcription factor family members have important roles in controlling pancreatic cell fates and maintaining beta cell mass and function, including FOXA1, FOXA2 and FOXM1. In this study we have examined the importance of FOXP1, FOXP2 and FOXP4 of the FOXP subfamily in islet cell development and function. METHODS: Mice harbouring floxed alleles for Foxp1, Foxp2 and Foxp4 were crossed with pan-endocrine Pax6-Cre transgenic mice to generate single and compound Foxp mutant mice. Mice were monitored for changes in glucose tolerance by IPGTT, serum insulin and glucagon levels by radioimmunoassay, and endocrine cell development and proliferation by immunohistochemistry. Gene expression and glucose-stimulated hormone secretion experiments were performed with isolated islets. RESULTS: Only the triple-compound Foxp1/2/4 conditional knockout (cKO) mutant had an overt islet phenotype, manifested physiologically by hypoglycaemia and hypoglucagonaemia. This resulted from the reduction in glucagon-secreting alpha cell mass and function. The proliferation of alpha cells was profoundly reduced in Foxp1/2/4 cKO islets through the effects on mediators of replication (i.e. decreased Ccna2, Ccnb1 and Ccnd2 activators, and increased Cdkn1a inhibitor). Adult islet Foxp1/2/4 cKO beta cells secrete insulin normally while the remaining alpha cells have impaired glucagon secretion. CONCLUSIONS/INTERPRETATION: Collectively, these findings reveal an important role for the FOXP1, 2, and 4 proteins in governing postnatal alpha cell expansion and function.


Assuntos
Proliferação de Células , Fatores de Transcrição Forkhead/metabolismo , Células Secretoras de Glucagon/metabolismo , Proteínas Repressoras/metabolismo , Animais , Fatores de Transcrição Forkhead/genética , Glucagon/sangue , Células Secretoras de Glucagon/citologia , Insulina/sangue , Camundongos , Camundongos Transgênicos , Proteínas Repressoras/genética
10.
Am J Physiol Endocrinol Metab ; 308(11): E978-89, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25852003

RESUMO

Nonobese diabetic (NOD) mice are a commonly used model of type 1 diabetes (T1D). However, not all animals will develop overt diabetes despite undergoing similar autoimmune insult. In this study, a comprehensive metabolomic approach, consisting of gas chromatography time-of-flight (GC-TOF) mass spectrometry (MS), ultra-high-performance liquid chromatography-accurate mass quadruple time-of-flight (UHPLC-qTOF) MS and targeted UHPLC-tandem mass spectrometry-based methodologies, was used to capture metabolic alterations in the metabolome and lipidome of plasma from NOD mice progressing or not progressing to T1D. Using this multi-platform approach, we identified >1,000 circulating lipids and metabolites in male and female progressor and nonprogressor animals (n = 71). Statistical and multivariate analyses were used to identify age- and sex-independent metabolic markers, which best differentiated metabolic profiles of progressors and nonprogressors. Key T1D-associated perturbations were related with 1) increases in oxidation products glucono-δ-lactone and galactonic acid and reductions in cysteine, methionine and threonic acid, suggesting increased oxidative stress; 2) reductions in circulating polyunsaturated fatty acids and lipid signaling mediators, most notably arachidonic acid (AA) and AA-derived eicosanoids, implying impaired states of systemic inflammation; 3) elevations in circulating triacylglyercides reflective of hypertriglyceridemia; and 4) reductions in major structural lipids, most notably lysophosphatidylcholines and phosphatidylcholines. Taken together, our results highlight the systemic perturbations that accompany a loss of glycemic control and development of overt T1D.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Hipertrigliceridemia/metabolismo , Inflamação/metabolismo , Metaboloma , Estresse Oxidativo/fisiologia , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Regulação para Baixo , Feminino , Hipertrigliceridemia/complicações , Inflamação/complicações , Masculino , Camundongos , Camundongos Endogâmicos NOD , Regulação para Cima
11.
J Reprod Dev ; 60(3): 230-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24748398

RESUMO

The development and regeneration of the pancreas is of considerable interest because of the role of these processes in pancreatic diseases, such as diabetes. Here, we sought to develop a large animal model in which the pancreatic cell lineage could be tracked. The pancreatic and duodenal homeobox-1 (Pdx1) gene promoter was conjugated to Venus, a green fluorescent protein, and introduced into 370 in vitro-matured porcine oocytes by intracytoplasmic sperm injection-mediated gene transfer. These oocytes were transferred into four recipient gilts, all of which became pregnant. Three gilts were sacrificed at 47-65 days of gestation, and the fourth was allowed to farrow. Seven of 16 fetuses obtained were transgenic (Tg) and exhibited pancreas-specific green fluorescence. The fourth recipient gilt produced a litter of six piglets, two of which were Tg. The founder Tg offspring matured normally and produced healthy first-generation (G1) progeny. A postweaning autopsy of four 27-day-old G1 Tg piglets confirmed the pancreas-specific Venus expression. Immunostaining of the pancreatic tissue indicated the transgene was expressed in ß-cells. Pancreatic islets from Tg pigs were transplanted under the renal capsules of NOD/SCID mice and expressed fluorescence up to one month after transplantation. Tg G1 pigs developed normally and had blood glucose levels within the normal range. Insulin levels before and after sexual maturity were within normal ranges, as were other blood biochemistry parameters, indicating that pancreatic function was normal. We conclude that Pdx1-Venus Tg pigs represent a large animal model suitable for research on pancreatic development/regeneration and diabetes.


Assuntos
Animais Geneticamente Modificados , Proteínas de Fluorescência Verde/genética , Pâncreas/metabolismo , Suínos/genética , Animais , Rastreamento de Células/métodos , Rastreamento de Células/veterinária , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Transferência de Genes/veterinária , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Transplante das Ilhotas Pancreáticas/métodos , Transplante das Ilhotas Pancreáticas/veterinária , Masculino , Especificidade de Órgãos/genética , Pâncreas/embriologia , Gravidez , Injeções de Esperma Intracitoplásmicas/veterinária , Suínos/embriologia , Transativadores/genética
12.
Diabetes ; 73(4): 533-541, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215069

RESUMO

For many years, it has been taught in medical textbooks that the endocrine and exocrine parts of the pancreas have separate blood supplies that do not mix. Therefore, they have been studied by different scientific communities, and patients with pancreatic disorders are treated by physicians in different medical disciplines, where endocrine and exocrine function are the focus of endocrinologists and gastroenterologists, respectively. The conventional model that every islet in each pancreatic lobule receives a dedicated arterial blood supply was first proposed in 1932, and it has been inherited to date. Recently, in vivo intravital recording of red blood cell flow in mouse islets as well as in situ structural analysis of 3D pancreatic vasculature from hundreds of islets provided evidence for preferentially integrated pancreatic blood flow in six mammalian species. The majority of islets have no association with the arteriole, and there is bidirectional blood exchange between the two segments. Such vascularization may allow an entire downstream region of islets and acinar cells to be simultaneously exposed to a topologically and temporally specific plasma content, which could underlie an adaptive sensory function as well as common pathogeneses of both portions of the organ in pancreatic diseases, including diabetes.


Assuntos
Diabetes Mellitus , Ilhotas Pancreáticas , Pâncreas Exócrino , Camundongos , Animais , Humanos , Ilhotas Pancreáticas/irrigação sanguínea , Pâncreas/fisiologia , Células Acinares , Mamíferos
13.
Phys Biol ; 10(3): 036009, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23629025

RESUMO

The islets of Langerhans, responsible for controlling blood glucose levels, are dispersed within the pancreas. A universal power law governing the fractal spatial distribution of islets in two-dimensional pancreatic sections has been reported. However, the fractal geometry in the actual three-dimensional pancreas volume, and the developmental process that gives rise to such a self-similar structure, has not been investigated. Here, we examined the three-dimensional spatial distribution of islets in intact mouse pancreata using optical projection tomography and found a power law with a fractal dimension of 2.1. Furthermore, based on two-dimensional pancreatic sections of human autopsies, we found that the distribution of human islets also follows a universal power law with a fractal dimension of 1.5 in adult pancreata, which agrees with the value previously reported in smaller mammalian pancreas sections. Finally, we developed a self-avoiding growth model for the development of the islet distribution and found that the fractal nature of the spatial islet distribution may be associated with the self-avoidance in the branching process of vascularization in the pancreas.


Assuntos
Fractais , Ilhotas Pancreáticas/crescimento & desenvolvimento , Modelos Anatômicos , Modelos Biológicos , Adulto , Animais , Feminino , Humanos , Ilhotas Pancreáticas/anatomia & histologia , Camundongos , Camundongos Endogâmicos C57BL , Tomografia Óptica
14.
J Clin Invest ; 133(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37338995

RESUMO

An increasing number of studies have demonstrated that disease states of the endocrine or exocrine pancreas aggravate one another, which implies bidirectional blood flow between islets and exocrine cells. However, this is inconsistent with the current model of unidirectional blood flow, which is strictly from islets to exocrine tissues. This conventional model was first proposed in 1932, and it has never to our knowledge been revisited to date. Here, large-scale image capture was used to examine the spatial relationship between islets and blood vessels in the following species: human, monkey, pig, rabbit, ferret, and mouse. While some arterioles passed by or traveled through islets, the majority of islets had no association with them. Islets with direct contact with the arteriole were significantly larger in size and fewer in number than those without contact. Unique to the pancreas, capillaries directly branched out from the arterioles and have been labeled as "small arterioles" in past studies. Overall, the arterioles emerged to feed the pancreas regionally, not specifically targeting individual islets. Vascularizing the pancreas in this way may allow an entire downstream region of islets and acinar cells to be simultaneously exposed to changes in the blood levels of glucose, hormones, and other circulating factors.


Assuntos
Ilhotas Pancreáticas , Animais , Humanos , Camundongos , Coelhos , Suínos , Fluxo Sanguíneo Regional , Furões , Pâncreas , Sistema Endócrino
15.
Diabetes ; 72(4): 433-448, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36940317

RESUMO

The Integrated Physiology of the Exocrine and Endocrine Compartments in Pancreatic Diseases workshop was a 1.5-day scientific conference at the National Institutes of Health (Bethesda, MD) that engaged clinical and basic science investigators interested in diseases of the pancreas. This report provides a summary of the proceedings from the workshop. The goals of the workshop were to forge connections and identify gaps in knowledge that could guide future research directions. Presentations were segregated into six major theme areas, including 1) pancreas anatomy and physiology, 2) diabetes in the setting of exocrine disease, 3) metabolic influences on the exocrine pancreas, 4) genetic drivers of pancreatic diseases, 5) tools for integrated pancreatic analysis, and 6) implications of exocrine-endocrine cross talk. For each theme, multiple presentations were followed by panel discussions on specific topics relevant to each area of research; these are summarized here. Significantly, the discussions resulted in the identification of research gaps and opportunities for the field to address. In general, it was concluded that as a pancreas research community, we must more thoughtfully integrate our current knowledge of normal physiology as well as the disease mechanisms that underlie endocrine and exocrine disorders so that there is a better understanding of the interplay between these compartments.


Assuntos
Diabetes Mellitus , Ilhotas Pancreáticas , Pâncreas Exócrino , Pancreatopatias , Humanos , Diabetes Mellitus/metabolismo , Pâncreas , Pancreatopatias/metabolismo
16.
J Cell Sci ; 123(Pt 16): 2733-42, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20647375

RESUMO

We previously reported that embryonic stem (ES) cells cultured on M15 cells, a mesoderm-derived supportive cell line, were efficiently differentiated towards an endodermal fate, finally adopting the specific lineages of various digestive organs such as the pancreas and liver. We show here that the endoderm-inducing activity of M15 cells is in part mediated through the extracellular matrices, and that laminin alpha5 is one of the crucial components. In an attempt to establish a feeder-free ES-cell procedure for pancreatic differentiation, we used a synthesized basement membrane (sBM) substratum using an HEK293 cell line stably expressing laminin-511. On the sBM, mouse ES or induced pluripotent stem (iPS) cells sequentially differentiated into the definitive endoderm, pancreatic progenitor cells, and then insulin-expressing pancreatic beta-cells in vitro. Knockdown of ES cells with integrin beta1 (Itgb1) reduces differentiation towards pancreatic cells. Heparan sulfate proteoglycan 2 (HSPG2) knockdown and heparitinase treatment synergistically decreased the number of Pdx1-expressing cells. These findings indicate that components of the basement membrane have an important role in the differentiation of definitive endoderm lineages. This novel procedure will be useful for the study of pancreatic differentiation of ES or iPS cells and the generation of potential sources of surrogate cells for regenerative medicine.


Assuntos
Membrana Basal/citologia , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Pâncreas/citologia , Animais , Membrana Basal/química , Membrana Basal/metabolismo , Linhagem da Célula , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Endoderma/citologia , Endoderma/metabolismo , Humanos , Laminina/genética , Laminina/metabolismo , Camundongos , Camundongos Transgênicos , Pâncreas/metabolismo
17.
Pancreas ; 51(9): 1061-1073, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078927

RESUMO

ABSTRACT: The "Integrated Physiology of the Exocrine and Endocrine Compartments in Pancreatic Diseases" Workshop was a 1.5-day scientific conference at the National Institutes of Health (Bethesda, MD) that engaged clinical and basic science investigators interested in diseases of the pancreas. This report summarizes the workshop proceedings. The goal of the workshop was to forge connections and identify gaps in knowledge that could guide future research directions. Presentations were segregated into 6 major themes, including (a) Pancreas Anatomy and Physiology; (b) Diabetes in the Setting of Exocrine Disease; (c) Metabolic Influences on the Exocrine Pancreas; (d) Genetic Drivers of Pancreatic Diseases; (e) Tools for Integrated Pancreatic Analysis; and (f) Implications of Exocrine-Endocrine Crosstalk. For each theme, there were multiple presentations followed by panel discussions on specific topics relevant to each area of research; these are summarized herein. Significantly, the discussions resulted in the identification of research gaps and opportunities for the field to address. In general, it was concluded that as a pancreas research community, we must more thoughtfully integrate our current knowledge of the normal physiology as well as the disease mechanisms that underlie endocrine and exocrine disorders so that there is a better understanding of the interplay between these compartments.


Assuntos
Diabetes Mellitus , Ilhotas Pancreáticas , Pâncreas Exócrino , Pancreatopatias , Humanos , Diabetes Mellitus/terapia , Diabetes Mellitus/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo , Pâncreas Exócrino/metabolismo , Pancreatopatias/diagnóstico , Pancreatopatias/terapia , Pancreatopatias/metabolismo
18.
Biophys J ; 101(3): 565-74, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21806924

RESUMO

The islets of Langerhans, micro-organs for maintaining glucose homeostasis, range in size from small clusters of <10 cells to large islets consisting of several thousand endocrine cells. Islet size distributions among various species are similar and independent of body size, suggesting an intrinsic limit to islet size. Little is known about the mechanisms regulating islet size. We have carried out a comprehensive analysis of changes of islet size distribution in the intact mouse pancreas from birth to eight months, including mathematical modeling to quantify this dynamic biological process. Islet growth was size-dependent during development, with preferential expansion of smaller islets and fission of large interconnected islet-like structures occurring most actively at approximately three weeks of age at the time of weaning. The process of islet formation was complete by four weeks with little or no new islet formation thereafter, and all the ß-cells had low proliferation potential in the adult, regardless of islet size. Similarly, in insulinoma-bearing mice, the early postnatal developmental process including fission followed the same time course with no new islet formation in adults. However, tumor progression led to uncontrolled islet growth with accelerated expansion of larger islets. Thus, islet formation and growth is a tightly regulated process involving preferential expansion of small islets and fission of large interconnected islet-like structures.


Assuntos
Ilhotas Pancreáticas/crescimento & desenvolvimento , Modelos Biológicos , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Tamanho do Órgão
19.
Ann Surg ; 254(3): 512-8; discussion 518-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21865948

RESUMO

OBJECTIVES: To develop a novel approach for local immunoprotection using CD4(+)CD25(high)CD127(-) T regulatory cells (Tregs) attached to the surface of the islets before transplantation. BACKGROUND: Tregs expanded ex vivo can control allo and autoreactivity, therefore, Treg-based therapy may offer more effective protection for transplanted islets from immunologic attack than currently used immunosuppression. Local application of Tregs can make such therapy more clinically feasible and efficient. METHODS: Human islets were isolated and coated with allogeneic ex vivo expanded Tregs using biotin-poly(ethylene glycol)-N-hydroxysuccinimide ester (biotin-PEG-NHS) and streptavidin as binding molecules. RESULTS: Coating pancreatic islets with Tregs did not affect islet viability (>90% fluorescein diacetate/propidium iodide) or the insulin secretion profile in dynamic islet perifusion assays. After in vitro incubation with allogeneic T effector cells, Treg-coated islets revealed preserved function with higher insulin secretion compared with controls-native islets, coated islets with T effector cells or when Tregs were added to the culture, but not attached to islets (P < 0.05). In addition, the Enzyme-linked immunosorbent spot (ELISPOT) assay revealed suppression of interferon (IFN)-γ secretion, when T effector cells were challenged with Treg-coated islets comparing to controls (99 ± 7 vs 151 ± 8 dots, respectively; P < 0.01). CONCLUSIONS: We demonstrated, for the first time, the ability to bind immune regulatory cells to target cells with preservation of their viability and function and protective activity against immune attack. If successfully tested in an animal model, local delivery of immunoprotective Tregs on the surface of transplanted pancreatic islets may be an alternative or improvement to the currently used immunosuppression.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Terapia de Imunossupressão , Imunossupressores/uso terapêutico , Interferon gama/imunologia , Transplante das Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/imunologia , Linfócitos T Reguladores/imunologia , Tolerância ao Transplante , ELISPOT , Estudos de Viabilidade , Humanos , Terapia de Imunossupressão/métodos , Técnicas In Vitro , Interferon gama/efeitos dos fármacos , Tolerância ao Transplante/imunologia
20.
Front Endocrinol (Lausanne) ; 12: 602620, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040578

RESUMO

The pancreas is regarded as consisting of two separate organ systems, the endocrine and exocrine pancreas. While treatment of a disease with either an endocrine or exocrine pathogenesis may affect the function of the entire pancreas, the pancreatic diseases have been treated by clinicians in different medical disciplines, including endocrinologists and gastroenterologists. Islet microcirculation has long been considered to be regulated independently from that of the exocrine pancreas. A new model proposes that pancreatic islet blood flow is integrated with the surrounding exocrine capillary network. This recent model may provide revived or contrasting hypotheses to test, since the pancreatic microcirculation has critical implications for the regulation of islet hormones as well as acinar pancreas functions. In this mini-review, practical applications of in vivo and in situ studies of islet microcirculation are described with a specific emphasis on large-scale data analysis to ensure sufficient sample size accounting for known islet heterogeneity. For in vivo small animal studies, intravital microscopy based on two-photon excitation microscopes is a powerful tool that enables capturing the flow direction and speed of individual fluorescent-labeled red blood cells. Complementarily, for structural analysis of blood vessels, the recent technical advancements of confocal microscopy and tissue clearing have enabled us to image the three-dimensional network structure in thick tissue slices.


Assuntos
Ilhotas Pancreáticas/irrigação sanguínea , Microcirculação/fisiologia , Animais , Técnicas Citológicas , Hemodinâmica/fisiologia , Humanos , Técnicas In Vitro , Ilhotas Pancreáticas/citologia , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA