Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mitochondrial DNA B Resour ; 6(3): 943-945, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33796692

RESUMO

We report the complete mitochondrial genome sequence of Costapex baldwinae, a Caribbean representative of a predominantly Indo-Pacific genus of gastropods that occurs on sunken wood at bathyal depths. The mitogenome is 15,321 bp in length and has a base composition of 29.2% A, 41.8% T, 12.0% C and 17.0% G. It contains 13 protein-coding, two ribosomal RNA, and 22 tRNA genes with the same gene order and strand orientation as other non-toxoglossan neogastropods. Phylogenetic analyses indicate that the superfamily Turbinelloidea, represented by this species, diverged early within the Neogastropod radiation, forming the sister group to a clade that includes five of the seven presently recognized superfamilies.

2.
Front Zool ; 7: 14, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20465844

RESUMO

BACKGROUND: The allosteric respiratory protein hemocyanin occurs in gastropods as tubular di-, tri- and multimers of a 35 x 18 nm, ring-like decamer with a collar complex at one opening. The decamer comprises five subunit dimers. The subunit, a 400 kDa polypeptide, is a concatenation of eight paralogous functional units. Their exact topology within the quaternary structure has recently been solved by 3D electron microscopy, providing a molecular model of an entire didecamer (two conjoined decamers). Here we study keyhole limpet hemocyanin (KLH2) tridecamers to unravel the exact association mode of the third decamer. Moreover, we introduce and describe a more complex type of hemocyanin tridecamer discovered in fresh/brackish-water cerithioid snails (Leptoxis, Melanoides, Terebralia). RESULTS: The "typical" KLH2 tridecamer is partially hollow, whereas the cerithioid tridecamer is almost completely filled with material; it was therefore termed "mega-hemocyanin". In both types, the staggering angle between adjoining decamers is 36 degrees . The cerithioid tridecamer comprises two typical decamers based on the canonical 400 kDa subunit, flanking a central "mega-decamer" composed of ten unique ~550 kDa subunits. The additional ~150 kDa per subunit substantially enlarge the internal collar complex. Preliminary oxygen binding measurements indicate a moderate hemocyanin oxygen affinity in Leptoxis (p50 ~9 mmHg), and a very high affinity in Melanoides (~3 mmHg) and Terebralia (~2 mmHg). Species-specific and individual variation in the proportions of the two subunit types was also observed, leading to differences in the oligomeric states found in the hemolymph. CONCLUSIONS: In cerithioid hemocyanin tridecamers ("mega-hemocyanin") the collar complex of the central decamer is substantially enlarged and modified. The preliminary O2 binding curves indicate that there are species-specific functional differences in the cerithioid mega-hemocyanins which might reflect different physiological tolerances of these gill-breathing animals. The observed differential expression of the two subunit types of mega-hemocyanin might allow individual respiratory acclimatization. We hypothesize that mega-hemocyanin is a key character supporting the adaptive radiation and invasive capacity of cerithioid snails.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA