Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 19(8): 3326-3339, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32544340

RESUMO

Methotrexate (MTX) is a chemotherapeutic agent that can cause a range of toxic side effects including gastrointestinal damage, hepatotoxicity, myelosuppression, and nephrotoxicity and has potentially complex interactions with the gut microbiome. Following untargeted UPLC-qtof-MS analysis of urine and fecal samples from male Sprague-Dawley rats administered at either 0, 10, 40, or 100 mg/kg of MTX, dose-dependent changes in the endogenous metabolite profiles were detected. Semiquantitative targeted UPLC-MS detected MTX excreted in urine as well as MTX and two metabolites, 2,4-diamino-N-10-methylpteroic acid (DAMPA) and 7-hydroxy-MTX, in the feces. DAMPA is produced by the bacterial enzyme carboxypeptidase glutamate 2 (CPDG2) in the gut. Microbiota profiling (16S rRNA gene amplicon sequencing) of fecal samples showed an increase in the relative abundance of Firmicutes over the Bacteroidetes at low doses of MTX but the reverse at high doses. Firmicutes relative abundance was positively correlated with DAMPA excretion in feces at 48 h, which were both lower at 100 mg/kg compared to that seen at 40 mg/kg. Overall, chronic exposure to MTX appears to induce community and functionality changes in the intestinal microbiota, inducing downstream perturbations in CPDG2 activity, and thus may delay MTX detoxication to DAMPA. This reduction in metabolic clearance might be associated with increased gastrointestinal toxicity.


Assuntos
Microbioma Gastrointestinal , Metotrexato , Animais , Cromatografia Líquida , Fezes , Masculino , Metotrexato/toxicidade , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
2.
Toxicol Appl Pharmacol ; 368: 49-54, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30794826

RESUMO

INTRODUCTION: Nonalcoholic steatohepatitis (NASH) afflicts 20-36% of individuals with nonalcoholic fatty liver disease (NAFLD). A lipotoxic hepatic environment, altered innate immune signaling and inflammation are defining features of progression to NASH. Activated resident liver macrophages express folate receptor beta (FR-ß) which may be an indicator of progression from steatosis to NASH. The goals of this study were to characterize FR-ß protein expression in human NAFLD and rodent models of NASH, and demonstrate liver targeting of an FR-ß imaging agent to the liver of a rodent NASH model using FR-ß. METHODS: Rat liver lysates from methionine choline deficient (MCD) fed rats, high fat diet (HFD) and methionine choline sufficient (MC+) rat controls were analyzed for hepatic FR-ß protein. The FR-ß-targeted agent, Etarfolatide was injected into MCD and MC + -fed C57BL/6 mice for efficient FastSPECT hepatic imaging. Additionally, FR-ß expression across the stages of human NAFLD from normal to NASH was assessed. RESULTS: FastSPECT images show targeting of Etarfolatide to the liver of mice fed 8 weeks of MCD diet but not control-fed mice. The MCD rat model exhibited significantly increased protein expression of hepatic FR-ß in contrast to HFD or normal samples. Similarly human liver samples categorized as NASH Fatty or NASH Not Fatty showed elevated FR-ß protein when compared to normal liver. FR-ß transcript expression levels were elevated across both NASH Fatty and NASH Not Fatty samples. CONCLUSION: The findings in this study indicate that FR-ß expression in NASH may be harnessed to target agents directly to the liver.


Assuntos
Receptor 2 de Folato/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Macrófagos/metabolismo , Imagem Molecular/métodos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Biomarcadores/metabolismo , Deficiência de Colina/complicações , Dieta Hiperlipídica , Modelos Animais de Doenças , Receptor 2 de Folato/genética , Ácido Fólico/administração & dosagem , Ácido Fólico/análogos & derivados , Humanos , Masculino , Metionina/deficiência , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Compostos de Organotecnécio/administração & dosagem , Valor Preditivo dos Testes , Compostos Radiofarmacêuticos/administração & dosagem , Ratos Sprague-Dawley
3.
Annu Rev Pharmacol Toxicol ; 54: 509-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24160696

RESUMO

Hepatic efflux transporters include numerous well-known and emerging proteins localized to the canalicular or basolateral membrane of the hepatocyte that are responsible for the excretion of drugs into the bile or blood, respectively. Altered function of hepatic efflux transporters due to drug-drug interactions, genetic variation, and/or disease states may lead to changes in xenobiotic exposure in the hepatocyte and/or systemic circulation. This review focuses on transport proteins involved in the hepatocellular efflux of drugs and metabolites, discusses mechanisms of altered transporter function as well as the interplay between multiple transport pathways, and highlights the importance of considering intracellular unbound concentrations of transporter substrates and/or inhibitors. Methods to evaluate hepatic efflux transport and predict the effects of impaired transporter function on systemic and hepatocyte exposure are discussed, and the sandwich-cultured hepatocyte model to evaluate comprehensively the role of hepatic efflux in the hepatobiliary disposition of xenobiotics is characterized.


Assuntos
Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Xenobióticos/farmacologia , Animais , Bile/metabolismo , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Modelos Animais de Doenças , Interações Medicamentosas , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo
4.
Liver Int ; 37(7): 1074-1081, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28097795

RESUMO

BACKGROUND & AIMS: N-linked glycosylation of proteins is critical for proper protein folding and trafficking to the plasma membrane. Drug transporters are one class of proteins that have reduced function when glycosylation is impaired. N-linked glycosylation of plasma proteins has also been investigated as a biomarker for several liver diseases, including non-alcoholic fatty liver disease (NAFLD). The purpose of this study was to assess the transcriptomic expression of genes involved in protein processing and glycosylation, and to determine the glycosylation status of key drug transporters during human NAFLD progression. METHODS: Human liver samples diagnosed as healthy, steatosis, and non-alcoholic steatohepatitis (NASH) were analysed for gene expression of glycosylation-related genes and for protein glycosylation using immunoblot. RESULTS: Genes involved in protein processing in the ER and biosynthesis of N-glycans were significantly enriched for down-regulation in NAFLD progression. Included in the down regulated N-glycan biosynthesis category were genes involved in the oligosaccharyltransferase complex, N-glycan quality control, N-glycan precursor biosynthesis, N-glycan trimming to the core, and N-glycan extension from the core. N-glycan degradation genes were unaltered in the progression to NASH. Immunoblot analysis of the uptake transporters organic anion transporting polypeptide-1B1 (OATP1B1), OATP1B3, OATP2B1, and Sodium/Taurocholate Co-transporting Polypeptide (NTCP) and the efflux transporter multidrug resistance-associated protein 2 (MRP2) demonstrated a significant loss of glycosylation following the progression to NASH. CONCLUSIONS: These data suggest that the loss of glycosylation of key uptake and efflux transporters in humans NASH may influence transporter function and contribute to altered drug disposition observed in NASH.


Assuntos
Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Biológico , Western Blotting , Estudos de Casos e Controles , Retículo Endoplasmático/metabolismo , Perfilação da Expressão Gênica , Glicosilação , Humanos , Proteínas de Membrana Transportadoras/genética , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/genética , Transcriptoma
5.
Drug Metab Dispos ; 43(2): 266-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25488932

RESUMO

Nonalcoholic fatty liver disease is the most common chronic liver disease, which can progress to nonalcoholic steatohepatitis (NASH). Previous investigations demonstrated alterations in the expression and activity of hepatic drug transporters in NASH. Moreover, studies using rodent models of cholestasis suggest that compensatory changes in kidney transporter expression occur to facilitate renal excretion during states of hepatic stress; however, little information is currently known regarding extrahepatic regulation of drug transporters in NASH. The purpose of the current study was to investigate the possibility of renal drug transporter regulation in NASH across multiple experimental rodent models. Both rat and mouse NASH models were used in this investigation and include: the methionine and choline-deficient (MCD) diet, atherogenic diet, fa/fa rat, ob/ob and db/db mice. Histologic and pathologic evaluations confirmed that the MCD and atherogenic rats as well as the ob/ob and db/db mice all developed NASH. In contrast, the fa/fa rats did not develop NASH but did develop extensive renal injury compared with the other models. Renal mRNA and protein analyses of xenobiotic transporters suggest that compensatory changes occur in NASH to favor increased xenobiotic secretion. Specifically, both apical efflux and basolateral uptake transporters are induced, whereas apical uptake transporter expression is repressed. These results suggest that NASH may alter the expression and potentially function of renal drug transporters, thereby impacting drug elimination mechanisms in the kidney.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Rim/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Perfilação da Expressão Gênica , Rim/patologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos Mutantes , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
6.
Drug Metab Dispos ; 43(6): 829-35, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25788542

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, representing a spectrum of liver pathologies that include simple hepatic steatosis and the more advanced nonalcoholic steatohepatitis (NASH). The current study was conducted to determine whether pediatric NASH also results in altered disposition of acetaminophen (APAP) and its two primary metabolites, APAP-sulfate and APAP-glucuronide. Pediatric patients with hepatic steatosis (n = 9) or NASH (n = 3) and healthy patients (n = 12) were recruited in a small pilot study design. All patients received a single 1000-mg dose of APAP. Blood and urine samples were collected at 1, 2, and 4 hours postdose, and APAP and APAP metabolites were determined by high-performance liquid chromatography. Moreover, human liver tissues from patients diagnosed with various stages of NAFLD were acquired from the Liver Tissue Cell Distribution System to investigate the regulation of the membrane transporters, multidrug resistance-associated protein 2 and 3 (MRP2 and MRP3, respectively). Patients with the more severe disease (i.e., NASH) had increased serum and urinary levels of APAP-glucuronide along with decreased serum levels of APAP-sulfate. Moreover, an induction of hepatic MRP3 and altered canalicular localization of the biliary efflux transporter, MRP2, describes the likely mechanism for the observed increase in plasma retention of APAP-glucuronide, whereas altered regulation of sulfur activation genes may explain decreased sulfonation activity in NASH. APAP-glucuronide and APAP-sulfate disposition is altered in NASH and is likely due to hepatic membrane transporter dysregulation as well as altered intracellular sulfur activation.


Assuntos
Acetaminofen/farmacocinética , Analgésicos não Narcóticos/farmacocinética , Fígado/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Regulação para Cima , Acetaminofen/análogos & derivados , Acetaminofen/sangue , Acetaminofen/urina , Adolescente , Analgésicos não Narcóticos/sangue , Analgésicos não Narcóticos/urina , Canalículos Biliares/metabolismo , Canalículos Biliares/patologia , Biotransformação , Criança , Estudos de Coortes , Fígado Gorduroso/sangue , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/urina , Feminino , Humanos , Fígado/patologia , Masculino , Proteína 2 Associada à Farmacorresistência Múltipla , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/urina , Projetos Piloto , Transporte Proteico
7.
J Hepatol ; 61(1): 139-47, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24613363

RESUMO

BACKGROUND & AIMS: A genome wide association study and multiple pharmacogenetic studies have implicated the hepatic uptake transporter organic anion transporting polypeptide-1B1 (OATP1B1) in the pharmacokinetics and musculoskeletal toxicity of statin drugs. Other OATP uptake transporters can participate in the transport of pravastatin, partially compensating for the loss of OATP1B1 in patients carrying the polymorphism. Non-alcoholic steatohepatitis (NASH) in humans and in a diet-induced rodent model alter the expression of multiple OATP transporters. METHODS: To determine how genetic alteration in one Oatp transporter can interact with NASH-associated changes in Oatp expression we measured the disposition of intravenously administered pravastatin in Slco1b2 knockout (Slco1b2(-/-)) and wild-type (WT) mice fed either a control or a methionine and choline deficient (MCD) diet to induce NASH. RESULTS: Genetic loss of Oatp1b2, the rodent ortholog of human OATP1B transporters, caused a modest increase in pravastatin plasma concentrations in mice with healthy livers. Although a diet-induced model of NASH decreased the expression of multiple hepatic Oatp transporters, it did not alter the disposition of pravastatin compared to WT control mice. In contrast, the combination of NASH-associated decrease in compensatory Oatp transporters and Oatp1b2 genetic loss caused a synergistic increase in plasma area under the curve (AUC) and tissue concentrations in kidney and muscle. CONCLUSIONS: Our data show that NASH alters the expression of multiple hepatic uptake transporters which, due to overlapping substrate specificity among the OATP transporters, may combine with the pharmacogenetic loss of OATP1B1 to increase the risk of statin-induced adverse drug reactions.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Transportadores de Ânions Orgânicos Sódio-Independentes/deficiência , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Pravastatina/farmacocinética , Animais , Transporte Biológico Ativo , Colina/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/sangue , Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado , Masculino , Metionina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculos/efeitos dos fármacos , Músculos/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Pravastatina/efeitos adversos , Pravastatina/sangue
8.
J Pharmacol Exp Ther ; 348(3): 452-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24403518

RESUMO

Simvastatin (SIM)-induced myopathy is a dose-dependent adverse drug reaction (ADR) that has been reported to occur in 18.2% of patients receiving a 40- to 80-mg dose. The pharmacokinetics of SIM hydroxy acid (SIMA), the bioactive form of SIM, and the occurrence of SIM-induced myopathy are linked to the function of the organic anion transporting polypeptide (Oatp) hepatic uptake transporters. Genetic polymorphisms in SLCO1B1, the gene for human hepatic OATP1B1, cause decreased elimination of SIMA and increased risk of developing myopathy. Nonalcoholic steatohepatitis (NASH) is the most severe form of nonalcoholic fatty liver disease, and is known to alter drug transporter expression and drug disposition. The purpose of this study was to assess the metabolism and disposition of SIM in a diet-induced rodent model of NASH. Rats were fed a methionine- and choline-deficient diet for 8 weeks to induce NASH and SIM was administered intravenously. Diet-induced NASH caused increased plasma retention and decreased biliary excretion of SIMA due to decreased protein expression of multiple hepatic Oatps. SIM exhibited increased volume of distribution in NASH as evidenced by increased muscle, decreased plasma, and no change in biliary concentrations. Although Cyp3a and Cyp2c11 proteins were decreased in NASH, no alterations in SIM metabolism were observed. These data, in conjunction with our previous data showing that human NASH causes a coordinated downregulation of hepatic uptake transporters, suggest that NASH-mediated transporter regulation may play a role in altered SIMA disposition and the occurrence of myopathy.


Assuntos
Fígado Gorduroso/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Fígado/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Sinvastatina/análogos & derivados , Animais , Regulação para Baixo , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Masculino , Hepatopatia Gordurosa não Alcoólica , Ratos , Ratos Sprague-Dawley , Sinvastatina/efeitos adversos , Sinvastatina/metabolismo
9.
Drug Metab Dispos ; 42(4): 586-95, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24384915

RESUMO

Nonalcoholic fatty liver disease is a prevalent form of chronic liver disease that can progress to the more advanced stage of nonalcoholic steatohepatitis (NASH). NASH has been shown to alter drug transporter regulation and may have implications in the development of adverse drug reactions. Several experimental rodent models have been proposed for the study of NASH, but no single model fully recapitulates all aspects of the human disease. The purpose of the current study was to determine which experimental NASH model best reflects the known alterations in human drug transporter expression to enable more accurate drug disposition predictions in NASH. Both rat and mouse NASH models were used in this investigation and include the methionine and choline deficient (MCD) diet model, atherogenic diet model, ob/ob and db/db mice, and fa/fa rats. Pathologic scoring evaluations demonstrated that MCD and atherogenic rats, as well as ob/ob and db/db mice, developed NASH. Liver mRNA and protein expression analyses of drug transporters showed that in general, efflux transporters were induced and uptake transporters were repressed in the rat MCD and the mouse ob/ob and db/db models. Lastly, concordance analyses suggest that both the mouse and rat MCD models as well as mouse ob/ob and db/db NASH models show the most similarity to human transporter mRNA and protein expression. These results suggest that the MCD rat and mouse model, as well as the ob/ob and db/db mouse models, may be useful for predicting altered disposition of drugs with similar kinetics across humans and rodents.


Assuntos
Modelos Animais de Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Deficiência de Colina/complicações , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Dieta Aterogênica/efeitos adversos , Masculino , Metionina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/complicações , Obesidade/genética , Transportadores de Ânions Orgânicos/genética , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
10.
Mol Pharm ; 11(3): 766-75, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24410402

RESUMO

Breast cancer resistance protein (BCRP) and multidrug resistance-associated protein 2 (MRP2) are members of the ATP binding cassette (ABC) transporter family located in the canalicular membrane of hepatocytes that mediate biliary excretion of many drugs and endogenous compounds. BCRP and MRP2 have overlapping substrate profiles. Predicting drug disposition in the setting of altered transport function has important clinical significance. This investigation was designed to establish an in vitro model system to evaluate the impact of impaired Mrp2 and Bcrp function on hepatobiliary drug disposition. To achieve Bcrp knockdown by RNA interference (RNAi), sandwich-cultured hepatocytes (SCH) from Mrp2-deficient (TR(-)) and wild-type (WT) rats were infected with adenoviral vectors to express shRNA targeting Bcrp (Ad-siBcrp) at multiplicity of infection (MOI) of 1-10. MOI of 5 was identified as optimal. At MOI of 5, viral infection as well as WT or TR(-) status was statistically significant predictors of the rosuvastatin (RSV) biliary excretion index (BEI), consistent with the known role of Bcrp and Mrp2 in the biliary excretion of RSV in vivo in rats. Relative to WT rat SCH, marginal mean BEI (%) of RSV in TR(-) rat SCH decreased by 28.6 (95% CI: 5.8-51.3). Ad-siBcrp decreased marginal mean BEI (%) of RSV by 13.3 (7.5-9.1) relative to SCH infected with adenoviral vectors expressing a nontargeting shRNA (Ad-siNT). The BEI of RSV was almost ablated in TR(-) rat SCH with Bcrp knockdown (5.9 ± 3.0%) compared to Ad-siNT-infected WT rat SCH (45.4 ± 6.6%). These results demonstrated the feasibility of Bcrp knockdown in TR(-) rat SCH as an in vitro system to assess the impact of impaired Bcrp and Mrp2 function. At MOI of 5, viral infection had minimal effects on RSV total accumulation, but significantly decreased marginal mean taurocholate total accumulation (pmol/mg of protein) and BEI (%) by 9.9 (7.0-12.8) and 7.5 (3.7-11.3), respectively, relative to noninfected SCH. These findings may be due to off-target effects on hepatic bile acid transporters, even though no changes in protein expression levels of the hepatic bile acid transporters were observed. This study established a strategy for optimization of the knockdown system, and demonstrated the potential use of RNAi in SCH as an in vitro tool to predict altered hepatobiliary drug disposition when canalicular transporters are impaired.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/fisiologia , Sistema Biliar/efeitos dos fármacos , Fluorbenzenos/farmacologia , Hepatócitos/efeitos dos fármacos , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Ácido Taurocólico/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Sistema Biliar/citologia , Sistema Biliar/metabolismo , Transporte Biológico , Western Blotting , Células Cultivadas , Detergentes/farmacologia , Hepatócitos/citologia , Hepatócitos/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Masculino , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rosuvastatina Cálcica
11.
Am J Physiol Gastrointest Liver Physiol ; 304(1): G48-56, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23125159

RESUMO

Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency of premature infants and is characterized by an extensive hemorrhagic inflammatory necrosis of the distal ileum and proximal colon. We have previously shown that, during the development of experimental NEC, the liver plays an important role in regulating inflammation in the ileum, and accumulation of ileal bile acids (BA) along with dysregulation of ileal BA transporters contributes to ileal damage. Given these findings, we speculated that hepatic BA transporters would also be altered in experimental NEC. Using both rat and mouse models of NEC, levels of Cyp7a1, Cyp27a1, and the hepatic BA transporters Bsep, Ntcp, Oatp2, Oatp4, Mrp2, and Mrp3 were investigated. In addition, levels of hepatic BA transporters were also determined when the proinflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-18, which are both elevated in NEC, are neutralized during disease development. Ntcp and Mrp2 were decreased in NEC, but elevated ileal BA levels were not responsible for these reductions. However, neutralization of TNF-α normalized Ntcp, whereas removal of IL-18 normalized Mrp2 levels. These data show that the hepatic transporters Ntcp and Mrp2 are downregulated, whereas Cyp27a1 is increased in rodent models of NEC. Furthermore, increased levels of TNF-α and IL-18 in experimental NEC may play a role in the regulation of Ntcp and Mrp2, respectively. These data suggest the gut-liver axis should be considered when therapeutic modalities for NEC are developed.


Assuntos
Enterocolite Necrosante/metabolismo , Fígado/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Transportadores de Ânions Orgânicos Dependentes de Sódio/biossíntese , Simportadores/biossíntese , Animais , Ácidos e Sais Biliares/metabolismo , Western Blotting , Proteínas de Transporte/metabolismo , Colestanotriol 26-Mono-Oxigenase/metabolismo , DNA/biossíntese , DNA/genética , Regulação para Baixo , Enterocolite Necrosante/patologia , Enterócitos/metabolismo , Enterócitos/patologia , Interleucina-18/genética , Interleucina-18/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Proteína 2 Associada à Farmacorresistência Múltipla , RNA/biossíntese , RNA/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/fisiologia
12.
J Pharmacol Exp Ther ; 347(3): 737-45, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24080682

RESUMO

Basolateral efflux clearance (CLBL) contributes significantly to rosuvastatin (RSV) elimination in sandwich-cultured hepatocytes (SCH). The contribution of CLBL to RSV hepatic elimination was determined in single-pass isolated perfused livers (IPLs) from wild-type (WT) and multidrug resistance-associated protein 2 (Mrp2)-deficient (TR(-)) rats in the absence and presence of the P-glycoprotein and breast cancer resistance protein (Bcrp) inhibitor, elacridar (GF120918); clearance values were compared with SCH. RSV biliary clearance (CLBile) was ablated almost completely by GF120918 in TR(-) IPLs, confirming that Mrp2 and Bcrp primarily are responsible for RSV CLBile. RSV appearance in outflow perfusate was attributed primarily to CLBL, which was impaired in TR(-) IPLs. CLBL was ≈ 6-fold greater than CLBile in the linear range in WT IPLs in the absence of GF120918. Recovery of unchanged RSV in liver tissue increased in TR(-) compared with WT (≈ 25 versus 6% of the administered dose) due to impaired CLBL and CLBile. RSV pentanoic acid, identified by high-resolution liquid chromatography-tandem mass spectroscopy, comprised ≈ 40% of total liver content and ≈ 16% of the administered dose in TR(-) livers at the end of perfusion, compared with ≈ 30 and 3% in WT livers, consistent with impaired RSV excretion and "shunting" to the metabolic pathway. In vitro-ex vivo extrapolation between WT SCH and IPLs (without GF120918) revealed that uptake clearance and CLBL were 4.2- and 6.4-fold lower, respectively, in rat SCH compared with IPLs; CLBile translated almost directly (1.1-fold). The present IPL data confirmed the significant role of CLBL in RSV hepatic elimination, and demonstrated that both CLBL and CLBile influence RSV hepatic and systemic exposure.


Assuntos
Sistema Biliar/metabolismo , Fluorbenzenos/farmacocinética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Fígado/metabolismo , Pirimidinas/farmacocinética , Sulfonamidas/farmacocinética , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Bile/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Fluorbenzenos/sangue , Hepatócitos/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/sangue , Masculino , Camundongos Knockout , Ácidos Pentanoicos/metabolismo , Pirimidinas/sangue , Ratos , Rosuvastatina Cálcica , Sulfonamidas/sangue , Espectrometria de Massas em Tandem
13.
J Pharmacol Exp Ther ; 346(1): 121-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23639800

RESUMO

The blood-testis barrier (BTB) prevents the entry of many xenobiotic compounds into seminiferous tubules thereby protecting developing germ cells. Understanding drug transport across the BTB may improve drug delivery into the testis. Members of one class of drug, nucleoside reverse transcriptase inhibitors (NRTIs), do penetrate the BTB, presumably through interaction with physiologic nucleoside transporters. By investigating the mechanism of nucleoside transport, it may be possible to design other drugs to bypass the BTB in a similar manner. We present a novel ex vivo technique to study transport at the BTB that employs isolated, intact seminiferous tubules. Using this system, we found that over 80% of total uptake by seminiferous tubules of the model nucleoside uridine could be inhibited by 100 nM nitrobenzylmercaptopurine riboside (NBMPR, 6-S-[(4-nitrophenyl)methyl]-6-thioinosine), a concentration that selectively inhibits equilibrative nucleoside transporter 1 (ENT1) activity. In primary cultured rat Sertoli cells, 100 nM NBMPR inhibited all transepithelial transport and basolateral uptake of uridine. Immunohistochemical staining showed ENT1 to be located on the basolateral membrane of human and rat Sertoli cells, whereas ENT2 was located on the apical membrane of Sertoli cells. Transepithelial transport of uridine by rat Sertoli cells was partially inhibited by the NRTIs zidovudine, didanosine, and tenofovir disoproxil fumarate, consistent with an interaction between these drugs and ENT transporters. These data indicate that ENT1 is the primary route for basolateral nucleoside uptake into Sertoli cells and a possible mechanism for nucleosides and nucleoside-based drugs to undergo transepithelial transport.


Assuntos
Barreira Hematotesticular/metabolismo , Membrana Celular/metabolismo , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo/metabolismo , Nucleosídeos/metabolismo , Inibidores da Transcriptase Reversa/metabolismo , Células de Sertoli/metabolismo , Adulto , Animais , Transporte Biológico/efeitos dos fármacos , Barreira Hematotesticular/efeitos dos fármacos , Polaridade Celular , Células Cultivadas , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Humanos , Masculino , Moduladores de Transporte de Membrana/farmacologia , Camundongos , Transporte Proteico , Ratos , Túbulos Seminíferos/citologia , Túbulos Seminíferos/efeitos dos fármacos , Túbulos Seminíferos/metabolismo , Células de Sertoli/citologia , Células de Sertoli/efeitos dos fármacos , Uridina/metabolismo
14.
Drug Metab Dispos ; 41(3): 554-61, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23223517

RESUMO

The UDP-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) represent major phase II drug-metabolizing enzymes that are also responsible for maintaining cellular homeostasis by metabolism of several endogenous molecules. Perturbations in the expression or function of these enzymes can lead to metabolic disorders and improper management of xenobiotics and endobiotics. Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of liver damage ranging from steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. Because the liver plays a central role in the metabolism of xenobiotics, the purpose of the current study was to determine the effect of human NAFLD progression on the expression and function of UGTs and SULTs in normal, steatosis, NASH (fatty), and NASH (not fatty/cirrhosis) samples. We identified upregulation of UGT1A9, 2B10, and 3A1 and SULT1C4 mRNA in both stages of NASH, whereas UGT2A3, 2B15, and 2B28 and SULT1A1, 2B1, and 4A1 as well as 3'-phosphoadenosine-5'-phosphosulfate synthase 1 were increased in NASH (not fatty/cirrhosis) only. UGT1A9 and 1A6 and SULT1A1 and 2A1 protein levels were decreased in NASH; however, SULT1C4 was increased. Measurement of the glucuronidation and sulfonation of acetaminophen (APAP) revealed no alterations in glucuronidation; however, SULT activity was increased in steatosis compared with normal samples, but then decreased in NASH compared with steatosis. In conclusion, the expression of specific UGT and SULT isoforms appears to be differentially regulated, whereas sulfonation of APAP is disrupted during progression of NAFLD.


Assuntos
Fígado Gorduroso/enzimologia , Glucuronosiltransferase/metabolismo , Fígado/enzimologia , Sulfotransferases/metabolismo , Acetaminofen/metabolismo , Biotransformação , Progressão da Doença , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Regulação Enzimológica da Expressão Gênica , Glucuronídeos/metabolismo , Humanos , Isoenzimas , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica , RNA Mensageiro/metabolismo , Especificidade por Substrato , Ácidos Sulfônicos/metabolismo
15.
Bioengineering (Basel) ; 10(10)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37892925

RESUMO

The liver is one of the key organs for exogenous and endogenous metabolism and is often a target for drug- and chemical-driven toxicity. A wide range of experimental approaches has been established to model and characterize the mechanisms of drug- and chemical-induced hepatotoxicity. A number of microfluidics-enabled in vitro models of the liver have been developed, but the unclear translatability of these platforms has hindered their adoption by the pharmaceutical industry; to achieve wide use for drug and chemical safety evaluation, demonstration of reproducibility and robustness under various contexts of use is required. One of these commercially available platforms is the PhysioMimix LC12, a microfluidic device where cells are seeded into a 3D scaffold that is continuously perfused with recirculating cell culture media to mimic liver sinusoids. Previous studies demonstrated this model's functionality and potential applicability to preclinical drug development. However, to gain confidence in PhysioMimix LC12's robustness and reproducibility, supplementary characterization steps are needed, including the assessment of various human hepatocyte sources, contribution of non-parenchymal cells (NPCs), and comparison to other models. In this study, we performed replicate studies averaging 14 days with either primary human hepatocytes (PHHs) or induced pluripotent stem cell (iPSC)-derived hepatocytes, with and without NPCs. Albumin and urea secretion, lactate dehydrogenase, CYP3A4 activity, and metabolism were evaluated to assess basal function and metabolic capacity. Model performance was characterized by different cell combinations under intra- and inter-experimental replication and compared to multi-well plates and other liver platforms. PhysioMimix LC12 demonstrated the highest metabolic function with PHHs, with or without THP-1 or Kupffer cells, for up to 10-14 days. iPSC-derived hepatocytes and PHHs co-cultured with additional NPCs demonstrated sub-optimal performance. Power analyses based on replicate experiments and different contexts of use will inform future study designs due to the limited throughput and high cell demand. Overall, this study describes a workflow for independent testing of a complex microphysiological system for specific contexts of use, which may increase end-user adoption in drug development.

16.
Adv Biol (Weinh) ; : e2300131, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814378

RESUMO

In May 2022, there is an International Regulatory and Pharmaceutical Industry (Innovation and Quality [IQ] Microphysiological Systems [MPS] Affiliate) Workshop on the standardization of complex in vitro models (CIVMs) in drug development. This manuscript summarizes the discussions and conclusions of this joint workshop organized and executed by the IQ MPS Affiliate and the United States Food and Drug Administration (FDA). A key objective of the workshop is to facilitate discussions around opportunities and/or needs for standardization of MPS and chart potential pathways to increase model utilization in the context of regulatory decision making. Participation in the workshop included 200 attendees from the FDA, IQ MPS Affiliate, and 26 global regulatory organizations and affiliated parties representing Europe, Japan, and Canada. It is agreed that understanding global perspectives regarding the readiness of CIVM/MPS models for regulatory decision making and potential pathways to gaining acceptance is useful to align on globally. The obstacles are currently too great to develop standards for every context of use (COU). Instead, it is suggested that a more tractable approach may be to think of broadly applicable standards that can be applied regardless of COU and/or organ system. Considerations and next steps for this effort are described.

17.
Drug Metab Dispos ; 40(3): 450-60, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22112382

RESUMO

Ezetimibe (EZE) lowers serum lipid levels by blocking cholesterol uptake in the intestine. Disposition of EZE and its pharmacologically active glucuronide metabolite (EZE-GLUC) to the intestine is dependent on hepatobiliary efflux. Previous studies suggested that hepatic transporter expression and function may be altered during nonalcoholic steatohepatitis (NASH). The purpose of the current study was to determine whether NASH-induced changes in the expression and function of hepatic transporters result in altered disposition of EZE and EZE-GLUC. Rats fed a methionine- and choline-deficient (MCD) diet for 8 weeks were administered 10 mg/kg EZE either by intravenous bolus or oral gavage. Plasma and bile samples were collected over 2 h followed by terminal urine and tissue collection. EZE and EZE-GLUC concentrations were determined by liquid chromatography-tandem mass spectrometry. The sinusoidal transporter Abcc3 was induced in MCD rats, which correlated with increased plasma concentrations of EZE-GLUC, regardless of dosing method. Hepatic expression of the biliary transporters Abcc2 and Abcb1 was also increased in MCD animals, but the biliary efflux of EZE-GLUC was slightly diminished, whereas biliary bile acid concentrations were unaltered. The cellular localization of Abcc2 and Abcb1 appeared to be internalized away from the canalicular membrane in MCD livers, providing a mechanism for the shift to plasma drug efflux. The combination of induced expression and altered localization of efflux transporters in NASH shifts the disposition profile of EZE-GLUC toward plasma retention away from the site of action. This increased plasma retention of drugs in NASH may have implications for the pharmacological effect and safety of numerous drugs.


Assuntos
Anticolesterolemiantes/farmacocinética , Azetidinas/farmacocinética , Fígado Gorduroso/metabolismo , Animais , Anticolesterolemiantes/metabolismo , Azetidinas/metabolismo , Ácidos e Sais Biliares/metabolismo , Sistema Biliar/metabolismo , Transporte Biológico , Deficiência de Colina/metabolismo , Dieta , Ezetimiba , Fígado Gorduroso/genética , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Metionina/deficiência , Metionina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Hepatopatia Gordurosa não Alcoólica , Ratos , Ratos Sprague-Dawley
18.
Drug Metab Dispos ; 40(9): 1817-24, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22699396

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is represented by a spectrum of liver pathologies ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). Liver damage sustained in the progressive stages of NAFLD may alter the ability of the liver to properly metabolize and eliminate xenobiotics. The purpose of the current study was to determine whether NAFLD alters the disposition of the environmental toxicant arsenic. C57BL/6 mice were fed either a high-fat or a methionine-choline-deficient diet to model simple steatosis and NASH, respectively. At the conclusion of the dietary regimen, all mice were given a single oral dose of either sodium arsenate or arsenic trioxide. Mice with NASH excreted significantly higher levels of total arsenic in urine (24 h) compared with controls. Total arsenic in the liver and kidneys of NASH mice was not altered; however, NASH liver retained significantly higher levels of the monomethyl arsenic metabolite, whereas dimethyl arsenic was retained significantly less in the kidneys of NASH mice. NASH mice had significantly higher levels of the more toxic trivalent form in their urine, whereas the pentavalent form was preferentially retained in the liver of NASH mice. Moreover, hepatic protein expression of the arsenic biotransformation enzyme arsenic (3+ oxidation state) methyltransferase was not altered in NASH animals, whereas protein expression of the membrane transporter multidrug resistance-associated protein 1 was increased, implicating cellular transport rather than biotransformation as a possible mechanism. These results suggest that NASH alters the disposition of arsenical species, which may have significant implications on the overall toxicity associated with arsenic in NASH.


Assuntos
Arseniatos/farmacocinética , Arsenicais/farmacocinética , Poluentes Ambientais/farmacocinética , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Óxidos/farmacocinética , Animais , Arseniatos/toxicidade , Arseniatos/urina , Trióxido de Arsênio , Arsenicais/urina , Biotransformação , Deficiência de Colina/complicações , Dieta Hiperlipídica , Modelos Animais de Doenças , Poluentes Ambientais/toxicidade , Poluentes Ambientais/urina , Fígado Gorduroso/etiologia , Fígado Gorduroso/urina , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Metionina/deficiência , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Hepatopatia Gordurosa não Alcoólica , Óxidos/toxicidade , Óxidos/urina
19.
Toxicol Appl Pharmacol ; 261(3): 263-70, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22521605

RESUMO

C-reactive protein (CRP) is an acute phase protein in humans. Elevated levels of CRP are produced in response to inflammatory cytokines and are associated with atherosclerosis, hypertension, cardiovascular disease and insulin resistance. Exposure to inorganic arsenic, a common environmental toxicant, also produces cardiovascular disorders, namely atherosclerosis and is associated with insulin-resistance. Inorganic arsenic has been shown to contribute to cardiac toxicities through production of reactive oxygen species (ROS) that result in the activation of NFκB. In this study we show that exposure of the hepatic cell line, HepG2, to environmentally relevant levels of arsenite (0.13 to 2 µM) results in elevated CRP expression and secretion. ROS analysis of the samples showed that a minimal amount of ROS are produced by HepG2 cells in response to these concentrations of arsenic. In addition, treatment of FvB mice with 100 ppb sodium arsenite in the drinking water for 6 months starting at weaning age resulted in dramatically higher levels of CRP in both the liver and inner medullary region of the kidney. Further, mouse Inner Medullary Collecting Duct cells (mIMCD-4), a mouse kidney cell line, were stimulated with 10 ng/ml CRP which resulted in activation of NFκB. Pretreatment with 10 nM Y27632, a known Rho-kinase inhibitor, prior to CRP exposure attenuated NFκB activation. These data suggest that arsenic causes the expression and secretion of CRP and that CRP activates NFκB through activation of the Rho-kinase pathway, thereby providing a novel pathway by which arsenic can contribute to metabolic syndrome and cardiovascular disease.


Assuntos
Arsenitos/farmacologia , Proteína C-Reativa/fisiologia , NF-kappa B/metabolismo , Amidas/farmacologia , Animais , Biomarcadores/análise , Biotransformação/efeitos dos fármacos , Western Blotting , Proteína C-Reativa/análise , Proteína C-Reativa/biossíntese , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , L-Lactato Desidrogenase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Luciferases/metabolismo , Camundongos , NF-kappa B/genética , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transfecção , Quinases Associadas a rho/antagonistas & inibidores
20.
ALTEX ; 40(2): 314­336, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36044561

RESUMO

Immune responses are heavily involved in the regulation and pathogenesis of human diseases, including infectious diseases, inflammatory and autoimmune conditions, cancer, neurological disorders, and cardiometabolic syndromes. The immune system is considered a double-edged sword serving as a powerful host defense mechanism against infection and cancerous cells and causing detrimental tissue damage when the immune response is exaggerated or uncontrollable. One of the challenges in studying the efficacy and toxicity of drugs that target or modulate the immune system is the lack of suitable preclinical human models that are predictive of human response. Recent advancements in human microphysiological systems (MPS) have provided a promising in vitro platform to evaluate the response of immune organs ex vivo, to investigate the interaction of immune cells with non-lymphoid tissue cells, and to reduce the reliance on animals in preclinical studies. The development, regulation, trafficking, and responses of immune cells have been extensively studied in preclinical animal models and clinically, providing a wealth of knowledge by which to evaluate new in vitro models. Therefore, the application of immunocompetent MPS in drug discovery and development should first verify that the immune response in an MPS model recapitulates the complexity of the human immune physiology. This manuscript reviews biological functions of immune organ systems and tissue-resident immune cells and discusses contexts-of-use for commonly used immunocompetent and immune organ MPS models. Current perspective and recommendations are provided to guide the continued development of immune organ and immunocompetent MPS models and their application in drug discovery and development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA