Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658362

RESUMO

The motion of nanoparticles near surfaces is of fundamental importance in physics, biology, and chemistry. Liquid cell transmission electron microscopy (LCTEM) is a promising technique for studying motion of nanoparticles with high spatial resolution. Yet, the lack of understanding of how the electron beam of the microscope affects the particle motion has held back advancement in using LCTEM for in situ single nanoparticle and macromolecule tracking at interfaces. Here, we experimentally studied the motion of a model system of gold nanoparticles dispersed in water and moving adjacent to the silicon nitride membrane of a commercial LC in a broad range of electron beam dose rates. We find that the nanoparticles exhibit anomalous diffusive behavior modulated by the electron beam dose rate. We characterized the anomalous diffusion of nanoparticles in LCTEM using a convolutional deep neural-network model and canonical statistical tests. The results demonstrate that the nanoparticle motion is governed by fractional Brownian motion at low dose rates, resembling diffusion in a viscoelastic medium, and continuous-time random walk at high dose rates, resembling diffusion on an energy landscape with pinning sites. Both behaviors can be explained by the presence of silanol molecular species on the surface of the silicon nitride membrane and the ionic species in solution formed by radiolysis of water in presence of the electron beam.

2.
Phys Rev Lett ; 127(17): 178001, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34739294

RESUMO

Diffusive transport is characterized by a diffusivity tensor which may, in general, contain both a symmetric and an antisymmetric component. Although the latter is often neglected, we derive Green-Kubo relations showing it to be a general characteristic of random motion breaking time-reversal and parity symmetries, as encountered in chiral active matter. In analogy with the odd viscosity appearing in chiral active fluids, we term this component the odd diffusivity. We show how odd diffusivity emerges in a chiral random walk model, and demonstrate the applicability of the Green-Kubo relations through molecular dynamics simulations of a passive tracer particle diffusing in a chiral active bath.

3.
J Chem Phys ; 152(20): 201102, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486675

RESUMO

Active fluids, which are driven at the microscale by non-conservative forces, are known to exhibit novel transport phenomena due to the breaking of time reversal symmetry. Recently, Epstein and Mandadapu [arXiv:1907.10041 (2019)] obtained Green-Kubo relations for the full set of viscous coefficients governing isotropic chiral active fluids, including the so-called odd viscosity, invoking Onsager's regression hypothesis for the decay of fluctuations in active non-equilibrium steady states. In this Communication, we test these Green-Kubo relations using molecular dynamics simulations of a canonical model system consisting of actively torqued dumbbells. We find the resulting odd and shear viscosity values from the Green-Kubo relations to be in good agreement with values measured independently through non-equilibrium molecular dynamics flow simulations. This provides a test of the Green-Kubo relations and lends support to the application of the Onsager regression hypothesis in relation to viscous behaviors of active matter systems.

4.
J Chem Phys ; 147(16): 161725, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29096510

RESUMO

Noncovalent interactions are of fundamental importance across the disciplines of chemistry, materials science, and biology. Quantum chemical calculations on noncovalently bound complexes, which allow for the quantification of properties such as binding energies and geometries, play an essential role in advancing our understanding of, and building models for, a vast array of complex processes involving molecular association or self-assembly. Because of its relatively modest computational cost, second-order Møller-Plesset perturbation (MP2) theory is one of the most widely used methods in quantum chemistry for studying noncovalent interactions. MP2 is, however, plagued by serious errors due to its incomplete treatment of electron correlation, especially when modeling van der Waals interactions and π-stacked complexes. Here we present spin-network-scaled MP2 (SNS-MP2), a new semi-empirical MP2-based method for dimer interaction-energy calculations. To correct for errors in MP2, SNS-MP2 uses quantum chemical features of the complex under study in conjunction with a neural network to reweight terms appearing in the total MP2 interaction energy. The method has been trained on a new data set consisting of over 200 000 complete basis set (CBS)-extrapolated coupled-cluster interaction energies, which are considered the gold standard for chemical accuracy. SNS-MP2 predicts gold-standard binding energies of unseen test compounds with a mean absolute error of 0.04 kcal mol-1 (root-mean-square error 0.09 kcal mol-1), a 6- to 7-fold improvement over MP2. To the best of our knowledge, its accuracy exceeds that of all extant density functional theory- and wavefunction-based methods of similar computational cost, and is very close to the intrinsic accuracy of our benchmark coupled-cluster methodology itself. Furthermore, SNS-MP2 provides reliable per-conformation confidence intervals on the predicted interaction energies, a feature not available from any alternative method.

5.
Sci Data ; 8(1): 55, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568655

RESUMO

Advances in computational chemistry create an ongoing need for larger and higher-quality datasets that characterize noncovalent molecular interactions. We present three benchmark collections of quantum mechanical data, covering approximately 3,700 distinct types of interacting molecule pairs. The first collection, which we refer to as DES370K, contains interaction energies for more than 370,000 dimer geometries. These were computed using the coupled-cluster method with single, double, and perturbative triple excitations [CCSD(T)], which is widely regarded as the gold-standard method in electronic structure theory. Our second benchmark collection, a core representative subset of DES370K called DES15K, is intended for more computationally demanding applications of the data. Finally, DES5M, our third collection, comprises interaction energies for nearly 5,000,000 dimer geometries; these were calculated using SNS-MP2, a machine learning approach that provides results with accuracy comparable to that of our coupled-cluster training data. These datasets may prove useful in the development of density functionals, empirically corrected wavefunction-based approaches, semi-empirical methods, force fields, and models trained using machine learning methods.

6.
J Phys Condens Matter ; 29(27): 273002, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28323250

RESUMO

The atomic simulation environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simulations. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make it possible to perform very complex simulation tasks. For example, a sequence of calculations may be performed with the use of a simple 'for-loop' construction. Calculations of energy, forces, stresses and other quantities are performed through interfaces to many external electronic structure codes or force fields using a uniform interface. On top of this calculator interface, ASE provides modules for performing many standard simulation tasks such as structure optimization, molecular dynamics, handling of constraints and performing nudged elastic band calculations.

7.
Adv Energy Mater ; 5(7): 1401082, 2015 04.
Artigo em Inglês | MEDLINE | ID: mdl-26855639

RESUMO

The performance of metal oxides as redox materials is limited by their oxygen conductivity and thermochemical stability. Predicting these properties from the electronic structure can support the screening of advanced metal oxides and accelerate their development for clean energy applications. Specifically, reducible metal oxide catalysts and potential redox materials for the solar-thermochemical splitting of CO2 and H2O via an isothermal redox cycle are examined. A volcano-type correlation is developed from available experimental data and density functional theory. It is found that the energy of the oxygen-vacancy formation at the most stable surfaces of TiO2, Ti2O3, Cu2O, ZnO, ZrO2, MoO3, Ag2O, CeO2, yttria-stabilized zirconia, and three perovskites scales with the Gibbs free energy of formation of the bulk oxides. Analogously, the experimental oxygen self-diffusion constants correlate with the transition-state energy of oxygen conduction. A simple descriptor is derived for rapid screening of oxygen-diffusion trends across a large set of metal oxide compositions. These general trends are rationalized with the electronic charge localized at the lattice oxygen and can be utilized to predict the surface activity, the free energy of complex bulk metal oxides, and their oxygen conductivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA